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Abstract. Co-occurrence methods are increasingly utilized in ecology to infer networks of species
interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is
particularly common, but not restricted to, microbial networks constructed from metagenomic analy-
ses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed
using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a
well-resolved, empirically based, species interaction network from the same region. We evaluated the
overlap in the information provided by each network and the extent to which there is a bias for
co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions.
We found a poor correspondence between the co-occurrence network and the known species interac-
tions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true
non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive
non-trophic interactions such as commensalism and facilitation were detected at the highest rates.
These results demonstrate that co-occurrence networks do not represent classical ecological networks
in which interactions are defined by direct observations or experimental manipulations. Co-occurrence
networks provide information about the joint spatial effects of environmental conditions, recruitment,
and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expand-
ing positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for
well-known intertidal keystone species than for the rest of consumers in the community. Thus, as
observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence
networks must be interpreted with caution, especially when extending interaction-based ecological
theory to interpret network variability and stability. Co-occurrence networks may be particularly
valuable for analysis of community dynamics that blends interactions and environment, rather than
pairwise interactions alone.

Key words:  anthropogenic impacts; co-occurrence, ecological networks; food webs; intertidal; keystone species;
non-trophic interactions; species interactions.

INTRODUCTION

Most past ecological research on the network of species
interactions within communities has focused on small sub-
sets of interacting species, and usually on those interactions
that can be easily inferred from observation of an organ-
ism’s diet or physical contact between species, such as pre-
dation, pollination, and fruit dispersal (Dunne et al. 2002,
Montoya and Solé 2002, Bascompte and Jordano 2014).
Since such approaches usually require extensive efforts in
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data collection, and because many types of interactions or
ecological systems cannot be readily observed (e.g., micro-
bial communities, endoparasites), it is increasingly common
to infer or reconstruct interaction networks from pattern in
species co-occurrence in either time or space (Stephens et al.
2009, Araujo et al. 2011, Faust and Raes 2012, Borthagaray
et al. 2014).

Species co-occurrence is a simple and long sought after
approach to infer species interactions within ecological sys-
tems (Morales-Castilla et al. 2015, Cazelles et al. 2016,
Sander et al. 2017). Significant spatial co-occurrence is
considered evidence of positive or mutualistic interactions,
and co-exclusion considered evidence of negative (e.g., com-
petitive) interactions (Faust et al. 2015, Fuhrman et al.
2015). However, co-occurrence patterns within a single
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ecosystem can also be interpreted in terms of species
response to environmental factors (Peres-Neto et al. 2001)
or dispersal limitation (Ulrich 2004). The premise of the co-
occurrence approach is that if species in a community are
interacting with each other in a way that affects each others’
abundance or presence over space, thereby influencing local
community assembly patterns, then they will have non-
random co-occurrence that could be revealed through an
appropriate sampling design and statistical tests (Ulrich and
Gotelli 2013, Borthagaray et al. 2014). For example, preda-
tors might be observed with their prey more frequently, and
competitors might be observed together less frequently than
expected from random assembly. This approach is closely
related to the development of assembly rules (Diamond
1975) and null models in ecology (Gotelli and Graves 1996).
While our understanding of co-occurrence patterns and the
processes underlying community assembly is much more
sophisticated and multifactorial than originally envisioned
(Chase 2010, de Bello et al. 2012, Cazelles et al. 2016),
the basic premise from the point of view of building ecologi-
cal networks from such patterns is essentially the same
(Peres-Neto et al. 2001).

The pattern of interactions among members of an ecologi-
cal community has consequences for population dynamics
and persistence of species, for network stability and for the
maintenance of ecological function (Allesina and Pascual
2008, Faust and Raes 2012, Slessarev et al. 2016). It is there-
fore important to understand to what extent patterns of co-
occurrence of species (or Operational Taxonomic Units
[OTUs] in the case of microbes) reflect species interactions.
In other words, to what extent are ecological networks built
from co-occurrence patterns, for microscopic or metazoan
organisms, commensurate with those built through direct
observation, such as gut content analyses, direct observa-
tions of consumption, stable isotope analyses, or experimen-
tal manipulations (Dunne et al. 2008, Kéfi et al. 2015, 2016,
Sander et al. 2017)?

There are important ecological and methodological rea-
sons as to why ecological interactions may not translate into
easily discernible patterns of co-occurrence. The method of
constructing ecological networks from co-occurrence data
has explicit spatial assumptions built into its design, which
should be scrutinized further so that we better understand
the limitations of the approach when it comes to interpreting
network structure and dynamics. Predator and prey are
expected to positively correlate over some spatial scale that
allows predators to maximize prey encounters. Yet, over
some smaller scale, effective predators should reduce or
completely eliminate prey, sometimes restricting them to
refuges beyond predator reach, generating strong negative
associations. The actual spatial scale over which the direc-
tion of species correlation changes across an environmental
or biotic gradient will also change depending on biological
attributes of the species involved, such as body size and dis-
persal capacity (Borthagaray et al. 2014). This makes it
quite challenging to detect such correlations across multiple-
species assemblages using a fixed sampling size. In addition,
species interaction networks, especially food web networks,
are directed, which means the matrix of species interactions
can be asymmetric (Cazelles et al. 2016). Covariance
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structures estimated from spatial co-occurrence can only
infer symmetric interactions. Further, species can coexist
and exhibit a correlation in their abundances through either
time or space because they are affected by a third species (as
in apparent competition, e.g., Holt and Bonsall 2017), or
through a common environmental factor, even if the species
pair does not interact directly. Moreover, spatial variability
in dispersal and subsequent settlement and recruitment can
by itself generate spatial correlation patterns between species
(de Bello et al. 2012, Shinen and Navarrete 2014). The
multi-species interactive nature of real communities, where
each species simultaneously interacts with many others and
in different ways (Berlow et al. 2004, Kéfi et al. 2016), adds
additional complications when trying to construct patterns
of paired interaction from co-occurrence (Azaele et al.
2010). In this context, it is of great importance to under-
stand the robustness of the network reconstructions based
upon co-occurrence data.

Despite these limitations, one can still argue that, if spe-
cies interactions are important in determining the presence
of species, then non-random patterns of co-occurrence must
reflect the multiplicity of interactions, especially after con-
trolling for environmental effects and indirect effects of third
species (Peres-Neto et al. 2001, Azaele et al. 2010). Co-
occurrence analyses can be particularly valuable because
they have the potential to reveal which species respond in
similar ways to ecosystem conditions. Indeed, many “true”
observed links (e.g., a predator incidentally consuming a
prey species) may be feeble and have little relevance in mod-
ulating prey abundance (but see Berlow 1999). In this sense,
significant patterns of co-occurrence may reveal strong eco-
logical interactions and filter out many weak effects.

Here we provide an empirical test of inferring species
interactions from correlational studies using a well-resolved
and comparatively specious empirically based ecological
network from the wave exposed rocky shore of central Chile.
We focus on examining the types of interactions for which
there is the greatest correspondence between correlation-
based and empirical approaches to species interactions. The
only other study to conduct such an analysis focused on
machine learning approaches and comparison to different
ecosystems (Sander et al. 2017). We elucidate the aspects of
the intertidal ecosystem that relate most directly to species
co-occurrence.

We examine whether patterns of species co-occurrence,
obtained through intensive field surveys conducted at multi-
ple sites, may reflect the documented species interactions in
the network. Importantly, not only consumptive interactions
among the members (hereafter food web) of the local com-
munity have been considered, but also non-trophic interac-
tions (hereafter NTI), such as facilitation, interference, or
habitat provisioning have been described (Kéfi et al. 2015,
2016). Since many of the documented interactions in
ecological communities are non-trophic, such as mutualistic
relations and competition, we examine whether spatial co-
occurrence patterns reflect best trophic, positive NTT or neg-
ative NTI type of interactions. Moreover, we assess whether
known strong interactions are better resolved by spatial co-
occurrence patterns, as well as assess the performance of the
methods across strong environmental gradients.
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tions for the wave-exposed rocky shore of central Chile (see
Castilla and Durdn 1985, and Castilla 1999 for an overview
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Field surveys in rocky shore communities

The spatial data is from surveys of species at multiple sites
over multiple years along the rocky shores of central Chile.
A total of 49 sites and 3,847 quadrats were considered in
our analyses (Fig. 1). Out of these 49 sites, 46 sites were
sampled during the time periods 1998-2000, 2003-2005, and
2010, 7-15 quadrats of 50 x 50 cm placed haphazardly
along a 20-30 m long transect at each low and mid, and
occasionally high, intertidal zones were sampled. This sam-
pling effort was sufficient to capture the full species richness
at each site (Broitman et al. 2011). Note that not every site
was sampled every year and a different number of quadrats
were sampled during each survey. Details of the surveys,
methods and distribution of sites sampled can be found in
Broitman et al. (2001, 2011), Navarrete et al. (2005), and
Wieters et al. (2009). In 2013, three additional sites around
the region of Copiapd (27° S) were surveyed. This time, 25
quadrats of 50 x 50 cm at three different tidal levels (high,
mid, and low tide) along 50-m transects were sampled. For
all surveys, mobile species were counted as individual organ-
isms while sessile species were recorded as percent cover.

Inferring links from spatial structure

We used Pearson correlations on presence/absence data to
test for spatial association between species. The sign and
magnitude of the association is that of the correlation coeffi-
cient. Note that for presence/absence data, Pearson correla-
tion is equivalent to Spearman and Kendall’s tau
correlations. We assigned a o = 0.1 significance threshold,
privileging a greater number of significant links over preci-
sion. The results are insensitive to alterations in this value,
however it should be noted that 10% of the inferred associa-
tions are likely due to statistical effects.

12 http://staging. mappr.io/play/chile-marine-intertidal-network

intertidal sites during the years 1998-2013. Not all sites were sur-
veyed in all years and a different number of samples were taken
during each survey. The figure indicates the latitude of sampling
sites, which should be projected on the coast for the actual sampling
location.

In Results, and for ease of presentation, we describe to
what extent the species interactions recovered from co-
occurrence data revealed “true” links as previously described
in the intertidal ecological network, using the Pearson corre-
lation approach and note the differences with the null model
approach. Of course, as discussed above, identification of
such “true” links are not free of assumptions (see Kéfi et al.
[2015] for detailed discussion). We adopt the terminology of
“interaction” for links in the “true” network and “associa-
tion” for links in the co-occurrence network.

We present heat maps of the full results in the Appen-
dix S1: Figs. S2-S6 and present and discuss condensed ver-
sions of these results in the body of the manuscript.

Sensitivity, or the probability of detection of a true link, is
computed as the ratio of the number of links that are cor-
rectly identified as ecological interactions (true positives) to
the total number of links in the empirical network. Speci-
ficity, or the true negative rate, is the ratio of the number of
links that are correctly identified non-interactions (true neg-
atives) to the total number of non-interactions in the empiri-
cal network. Sensitivity and specificity are defined for any
given subnetwork, including for single species, by counting
only the links that connect to species within that subnetwork
(links may originate or end outside of the subnetwork).

There is a plethora of approaches for reconstructing spe-
cies interactions from presence/absence data, but most have
the covariance matrix, the object of analysis in this study,
as a common underpinning. An alternative conceptual
approach, the “probabilistic approach,” is to measure associ-
ation based on significant deviations from the expected
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probability of co-occurrence of two species based on the
occurrence of single species (Aradjo et al. 2011, Veech
2014). Significant deviation from the expectation can be
determined using a null model approach (Gotelli and Graves
1996), or an exact P value if there are very few samples
(Veech 2014). To complement our analysis, we used both the
correlation and the probabilistic approach described here.

Strong interactions

The keystone species in this ecosystem that have been identi-
fied through experimental manipulations (Paine 1966, Castilla
and Durdn 1985, Oliva and Castilla 1986, Navarrete and
Castilla 2003, Aguilera and Navarrete 2012) are carnivores:
the seastar Heliaster helianthus and the muricid whelk
Concholepas concholepas, and grazers: Fissurella crassa and
Fissurella limbata. 1t should be noted that these grazers are
highly omnivorous (Camus et al. 2008, 2013). There are also
14 species that are harvested by humans, including three of the
keystone species (C. concholepas, F. crassa, and F. limbata).

REsuLTS

Inferring links of the ecological network from
non-random co-occurrence

The probabilistic approach performs substantially worse
than the correlation-based approach due to a high false-
positive rate (specificity of 0.283). It has slightly higher
sensitivity (0.692) than the correlation-based approach,
particularly for rare species, but much lower specificity.
Consequently, we focus on analyzing the performance of the
better-performing correlation method and present the
results of the probabilistic approach in Appendix SI:
Figs. S7, S8.

The overall sensitivity using the correlation-based appro-
ach with a significance of o = 0.1 is 0.469, meaning just
under one-half of the interactions in the empirical network
are detected as significant associations. The specificity is
0.527, meaning that slightly over one-half of the detected

Ecology, Vol. xx, No. xx

non-associations are not interactions. The lowest specificity
(0.367) was in the sessile-sessile interactions, which are
mostly negative NTIs. In comparison to other interactions,
there are relatively few interactions where a sessile species
affects a mobile species and both specificity (0.558) and sen-
sitivity (0.531) are highest for these interactions.

As a species becomes more common across the region,
sensitivity increases rapidly at first and then appears to level
off around an occurrence of 1,000 quadrats out of the total
of 3,847 quadrats (Fig. 2a). Similarly, specificity rapidly
declines, i.e., more false or spurious interactions are detected
with increasing occurrence of the species in the field surveys
up to about 1,000 quadrats, where it levels off to between
0.2 and 0.3 (20-30% of non-interactions correctly classified
as non-interactions; Fig. 2b). The specificity does not fall
off as quickly as sensitivity increases; a linear best fit
between the two metrics for each individual species com-
pared to all interaction types has a slope of —0.861
(Fig. 2¢). The detection is best for positive non-trophic
interactions (Fig. 2c, purple line). We find no relationship
between the total number of potential interactions and the
average effect size (Appendix S1: Fig. S1).

Detection by interaction type

The ability to correctly detect a true link (i.e., sensitivity)
varies across different interaction types with positive non-
trophic interactions being most detectable by co-occurrence.
Of the known positive non-trophic interactions, 77.4% were
detected (Fig. 3). Negative non-trophic interactions and
trophic interactions are less detected with 46.7% and 44.4%
of the known interactions detected, respectively (Fig. 3).

At the spatial scale of the quadrats (0.25 m?), the sign of
significant correlation coefficients that correspond with
trophic interactions is mainly positive, suggesting that the
co-occurrence approach is best able to detect instances
where species co-occur with their prey more often than they
exclude their prey (Fig. 4c). This may be a general principle
for this system, but we would need to collect additional
evidence to support this hypothesis. The strongest positive
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(a) Sensitivity, or percentage of links detected plotted against the total number of occurrences for a given species. (b) Specificity,

or percentage of non-interactions detected as non-interactions plotted against the total number of occurrences for a given species. In these
plots, each point is a different species. Blue dots are mobile species, green dots are sessile species. Darker dots are harvested species and spe-
cies outlined in black are keystone species. (¢) Specificity plotted against sensitivity. Each point is a different species. The colors indicate
which network, trophic interactions (T1), positive non-trophic interactions (NTI+), negative non-trophic interactions (NTI—), or all interac-
tion types is used as the “true” network. The dashed lines are best fit lines for each interaction type. The black line is a 1:1 line. Points above
the 1:1 have better detection than random while point below the 1:1 line have worse detection than average.
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association observed was between the kelp Lessonia spp.
(L. spicata and L. beteroana) and the grazing limpet
S. scurra, which lives almost exclusively on the kelp. These
species thus also share a positive non-trophic interaction.
Almost all of the asymmetrical interactions in the interac-
tion network are trophic interactions. Only 614 of the signif-
icant associations correspond to asymmetrical interactions;
consequently 614 of 2,888 false positives are possibly
accounted for by asymmetry in interactions.

Of the 120 positive non-trophic interactions detected as a
significant association, 14 were detected as negative associa-
tions (Fig. 4d). Of these, four were species pairs that have
both positive and negative non-trophic interactions (Coral-
lina officinalis—Perumytilus  purpuratus, Phragmatopoma
spp.—Ulva rigida, Porphyra spp.—Semimytilus algosus, Semi-
mytilus algosus—Porphyra spp.). Four of the positive NTIs
that were detected as significant negative correlations
are positive interactions initiated by P. purpuratus, which is
both a strong competitor for space and a habitat engineering
species.

Negative non-trophic interactions detected as significant
associations in the co-occurrence analysis were overwhelm-
ingly and incorrectly identified as positive associations
(Fig. 4a). In the low intertidal zone, negative non-trophic
interactions were more likely to be identified as negative
associations in the surveys than at any other tidal height.

The intertidal stress gradient

The gradient from low to high intertidal zone represents a
strong environmental stress gradient for intertidal organisms
of marine origin (Connell 1961). We therefore performed sep-
arate analyses per tidal height, which is one way of controlling
for or reducing the influence of environmental conditions.

Overall, a smaller percentage of the links were detected
when separate analyses were conducted for the high, mid,
and low shore heights, especially a lower percentage of posi-
tive non-trophic interactions and of trophic interactions
(Fig. 3). The lower percentage of links detected is due, at
least in part, to reduction in statistical power due to the
smaller sample sizes. There are 1,610 quadrats for each of
the low and mid tidal heights and 627 quadrats at the high
tidal height. In order to control for the effects of reducing
the sample size on the statistical power, we performed the
co-occurrence analysis on 500 random subsamples with the
same number of quadrats as were available for each shore
height, 1,610 quadrats for comparison to the low and mid
tidal zone and 627 quadrats for comparison to the high tidal
zone. For all interaction types, a lower percentage of interac-
tions were detected with a random subsample than with all
samples, indicating that there is a reduction of statistical
power with a reduced sample size. From these analyses, we
found that species co-occurrence detected 34.6% + 0.0187%
(mean + SD) of the negative non-trophic interactions with
627 randomly selected samples and 38.2% =+ 0.0152% of the
negative non-trophic interactions with 1,610 samples,
60.2% =+ 0.0338% of the positive non-trophic interactions
with 627 samples and 66.3% =+ 0.0616% of the positive non-
trophic interactions with 1,610 samples. Finally, species
co-occurrence detected 28.0% =+ 0.0141% of the trophic
interactions with 627 samples and 33.8% 4+ 0.010% of the
trophic interactions with 1,610 samples. These numbers
should be compared with Fig. 3 to understand the interac-
tion of tidal height and interaction type for detectability.
Co-occurrence using just samples from the high tidal height
detects a higher proportion of the known negative non-
trophic and trophic interactions than a sample across the
environmental gradient of the same size. Using the low and
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species is indicated by the node color. Blue edges indicate an inferred positive association while red edges indicate an inferred negative asso-
ciation. (d) Network showing all positive non-trophic interactions. Blue edges indicate a positive association inferred by co-occurrence, red
edges indicate a negative association inferred by co-occurrence, and black edges indicate no association. The node size represents the num-
ber of samples in which each species occurred while node color is the preferred tidal level for each species.

mid tidal elevation samples, co-occurrence detects fewer
links than in a sample of the same size across the environ-
mental gradient for all interaction types.

Indirect interactions

The empirical network is dense, with 4,458 links represent-
ing both trophic and non-trophic interactions, resulting in a
connectance of 0.47. Consequently, indirect interactions are
extremely abundant in this system. At path length 4, the net-
work is complete (every species is connected to every other
species by a path of length 4). An indirect interaction of path
length 2 is an interaction between two species that is mediated
by a third species (e.g., species A and species B have an inter-
action, species C and species B have an interaction, so the
interaction between species A and species C is a path length
two indirect interaction). There are 8,833 interactions of path
length two; of these, 1,537 correspond to significant co-occur-
rences that did not correspond to links in the empirical net-
works of known direct interactions (“false positives”),
making them likely candidates for pairwise co-occurrence

driven by interactions with a third species. One example of an
indirect interaction is competition for prey. In this network,
1,324 path length 2 indirect interactions are between preda-
tors that share prey. Of these 1,324 links, 496 links were dis-
covered as significant association between species.

Strong interactions: keystone species, anthropogenic
effects, and effect size

We did not find that the keystone species are distinguish-
able in either the specificity or sensitivity from other species
in the community. Harvested species tend to have a slightly
larger effect size (stronger correlation) for a given node
degree (Fig. 5), whereas no noticeable distinction between
keystone and other species was observed in terms of the
effect size (Fig. 5). The median effect size of correlations
increases with increasing detected node degree and sessile
species show a more gradual increasing trend than mobile
species. The species with the largest median effect sizes were
small generalist herbivores, the barnacles N. scabrosus and
J. cirratus and the algae M. laminarioides and Porphyra spp.
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species, green dots are sessile species. Darker dots are harvested spe-
cies and species outlined in black are keystone species.

DiscussioN

The construction of ecological networks from patterns of
species co-occurrences is rapidly expanding in the microbial
ecological and biomedical sciences (Fuhrman et al. 2015),
and spreading to metazoan communities (Aradjo et al.
2011, Borthagaray et al. 2014). There is no doubt that such
co-occurrence networks reveal aspects of a local community
that have important bearing on network dynamics, stability,
and resilience (Faust and Raes 2012), and, in the case of
microbial environmental genomic studies, there are as of
now few other sensible approaches to get a glimpse into the
complex matrix of interactions among the members of these
highly diverse communities. Our results do not dispute the
importance of such networks. However, in many ways,
authors have interpreted co-occurrence as revealing “classi-
cal” species interaction networks (e.g., competition, preda-
tions, facilitation). Our results complement and expand
recent empirical findings (Sander et al. 2017), which suggest
this to be highly unlikely by using a spatially extensive data
set that reflects the type of presence—absence data that is
commonly available for co-occurrence studies.

Inferring links

Given the multiplicity of ecological and environmental
processes that affect species assemblages, the prevalence of
weak links in the empirical network, and the potentially
large number of species in this community, the result that
many species interactions are still detectable, with 25-70%
of species interactions detected, depending on the interac-
tion type and data subset used, is indicative of a strong role
of species interactions in this community.

There are distinct reasons, statistical and artefactual, for
why there may be false positives as opposed to false negatives.
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The correlation test can only infer symmetric interactions but
true interactions can be asymmetrical, leading to false posi-
tives. In addition, some of the false positives could represent
correlations based on shared environmental preference, com-
mon settlement patterns, or indirect interactions. Indirect
interactions could also result in false negatives, if multiple
interactions cancel out (Cazelles et al. 2016). There may be
other reasons for the lack of sensitivity, such as a priority
effect operating on sessile or highly territorial species, for
instance. If a priority effect is important, then the order of
arrival of larva to the shore, a stochastic process that may also
depend on species-specific life history traits, may matter more
for coexistence than does the outcome of competitive interac-
tions among juveniles or adults once on the shore (Berkley
et al. 2010, Aiken and Navarrete 2014, Orostica et al. 2014).

Increasing occurrence of individual species decreases the
specificity while increasing sensitivity. This diminishing
return has both statistical and biological explanations. As
occurrence increases, more information is available about
new species combinations, but as occurrence asymptotes to
match the number of samples, there is less information avail-
able again. The saturating relationships in Fig. 2a and b is
likely a unimodal relationship with zero sensitivity as occur-
rence approaches 1 and as occurrence approaches the num-
ber of samples. We cannot verify this hypothesis since no
species were present in all samples. This suggests that there
is a limit to detectability of interactions when using occur-
rence alone, a limitation that in theory could be resolved
with quantitative abundance data. Previous studies have
attributed similar results based on occurrences to significant
ecological processes, hypothesizing that less common species
are more affected by biotic interactions than by environmen-
tal preferences (Azaele et al. 2010). This may be the reason
why including both biotic and abiotic predictor variables
usually improves the modeling of species interactions and
spatial distribution (Gonzdlez-Salazar et al. 2013, Stephens
et al. 2017). In our system, we have no information that
could help us test this hypothesis. Further work along this
research direction should be encouraged.

We found that the Pearson’s correlation test performed
better than the probabilistic approach. The robustness of
Pearson’s correlation has been noted in other studies. Nota-
bly, Sander et al. (2017) found that two machine-learning
approaches were not superior to using Pearson’s correlation.

Niche-based and interaction-based processes

Positive non-trophic interactions are more detectable than
either negative non-trophic interactions or trophic interac-
tions. The fact that over 70% of positive non-trophic interac-
tions were correctly detected indicates the usefulness of
occurrence data to infer species interactions. A similar result
was also obtained by Sander et al. (2017) using occurrence
data and both Pearson’s correlation and Dynamic Bayesian
Networks to infer non-trophic interactions (positive and
negative pooled), which suggest that the increased sensitiv-
ity of occurrence data for this type of data may be a general
phenomenon. Positive non-trophic interactions generally
ameliorate environmental stress or provide habitat for other
species, in effect expanding the possible niche for the species
involved (Jones et al. 1994, Wright et al. 2002, Hastings et al.
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2007, Stachowicz 2012). Trophic and non-trophic interactions
can only operate within the niche defined by environmental
constraints. This may be a key attribute of positive non-
trophic interactions that makes them more detectable when
sampling across space and environmental variability.

Power to detect species interactions decreases when con-
trolling for tidal height except in the high tidal zone. Many
of the detected co-occurrences may be mainly driven by
shared environmental preferences rather than species inter-
actions. Controlling for tidal height might have been
expected to increase the detectability of interactions because
the interaction network is modular with the modules related
to the height at which species are found (Kéfi et al. 2015,
2016). However, many strong interactions occur between
tidal levels and lead to tidal segregation of species as shown
in Chile and in other rocky shore communities, i.e., preda-
tors delimiting lower end of mussels (Paine 1966, Castilla
and Duran 1985, Menge et al. 1994, Menge et al. 2004),
competitive monopolization or domination of the mid-tidal
zone restricting other species to higher or lower elevations
(Connell 1961, Navarrete and Castilla 1990, Berlow and
Navarrete 1997, Branch and Steffani 2004). This tidal segre-
gation between strong interactors would go undetected when
examining within tidal levels. On the other hand, the overlap
between environmental preference and potential species
interactions may artificially inflate detection of species inter-
actions when samples from all tidal heights are included.

Habitat preferences and environmental processes may be
especially important for shaping species distributions if bio-
tic interactions are weak (Shinen and Navarrete 2014).
There are considerably more negative non-trophic interac-
tions and trophic interactions in the empirical network than
there are positive non-trophic interactions, so there may also
be proportionally more weak negative non-trophic and
trophic interactions (Berlow et al. 2004, Lopez et al. 2017).
Weak interactions may have either less of an impact or a
more variable impact on the spatial structure of the commu-
nity (Berlow 1999). While weak interactions can be quite
important for population dynamics and community stabil-
ity, they may be less detectable using co-occurrence alone,
especially if there are many and diverse weak interactions.
One implication of this work is that studies based on pair-
wise interactions may not be generalizable to understanding
the whole community composition.

Indirect interactions

The pattern of species co-occurrence is affected by indi-
rect interactions (those mediated by a third species) in
addition to direct interactions (Cazelles et al. 2016).
Exploitation competition for prey might affect predator co-
occurrence, while the effects of multiple consumers on a sin-
gle prey species might blur the relationship between a single
consumer species and its prey. In terms of non-trophic inter-
actions, a species’ competitors are also likely competing with
each other due to the density of the negative non-trophic
interaction network.

Indirect interactions mediated by the habitat provisioning
species can be very strong. For example, of the species that
have significant associations with both Lessonia spp. and
P. purpuratus, 55 of 64 species have negative association with
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one and a positive association with the other. Lessonia and
P. purpuratus compete for space on the low shore and have a
negative non-trophic interaction. The reversed sign of the
association might be an indirect interaction mediated by the
competition between Lessonia and P. purpuratus.

Lack of significant co-occurrence could be generated by
indirect interactions if multiple interactions between species
cancel the effects of pairwise interactions. If this were the
case, one would expect that species with many interactions
(high node degree) would have fewer links detected than spe-
cies with fewer interactions (low node degree). In this analy-
sis, we find no relationship between total node degree and
the percent of links detected. There is a weak inverse rela-
tionship between outgoing node degree and the percent of
links detected, suggesting that specialist predators are more
likely to co-occur with their prey, since trophic interactions
are the main asymmetrical interactions in this network. This
is most likely related to mobility patterns of these predators.

Strong interactions: keystone species, anthropogenic
influence, and effect size

Harvested species have a larger effect size of realized co-
occurrences than would be expected based on the number of
links detected. This might be related to perturbations in the
system aiding detection because species interactions are
most evident as the species occurrences return to equilib-
rium after a disturbance. It may also reflect the fact that
humans usually remove the larger bodied species within a
given assemblage, which may have stronger effects than
other species in the assemblage.

The median of the absolute value of the effect size incre-
ases as the number of detected interactions increases (Fig. 5)
and there is no relationship between the total number of
potential interactions and the average effect size (Appen-
dix SI: Fig. S1). These results largely contradict the asser-
tion by Cazelles et al. (2016) that “the strength of an
interaction decreases with the total number of interactions a
species experiences.” The trend of increasing effect size as
the detected node degree increases could be statistical; when
there are many links, strong links are more likely to be
detected. In sectors of the interaction matrix with few inter-
actions (e.g., sessile species affecting mobile species), there is
high specificity and high sensitivity, indicating that when
there are fewer interactions at the community level, inter-
actions may be more detectable. More generally, these
results indicate that co-occurrence may mostly identify inter-
actions above a certain threshold and miss truly weak links.

We find that small grazers have the largest median effect
size of correlations. This is in line with the conclusions of
Borthagaray et al. 2014 that smaller species form tightly
linked subgroups (here manifested as large effect size) and
could be an effect of the relatively small quadrats, which
may capture the co-occurrence of smaller-sized species bet-
ter than larger species. There is also slightly higher edge den-
sity among the species in the steeply increasing section of
Fig. 5(0.25) as compared to edge density between those spe-
cies and the species on the slowly increasing section of the
trend (0.11). We additionally demonstrate that habitat engi-
neering sessile species can also form tightly linked
subgroups, but that not all sessile species form tightly
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linked groups. Most sessile species have relatively weak co-
occurrence with other species.

We do not find a distinct signal of keystone species. We
would have expected keystone species to have a large effect
size (Menge et al. 1994, Power et al. 1996), however, it is
possible that keystone species instead have large effect size
only when abundance is taken into account, or they may
have strong effects only on a small subset of the species with
which they interact. Moreover, it is possible that the effect of
keystone species may be more noticeable on indirect than
direct interactions. It is important to keep in mind, however,
that the ability to detect a predator-prey interaction using
spatial co-occurrence depends not only on the strength of
the interaction, but also on how homogeneous or variable
are across space the other factors that simultaneously influ-
ence species distribution, such as recruitment and environ-
mental tolerances.

CONCLUSIONS

Co-occurrence networks do not reproduce interaction net-
works, but they do provide interesting and interpretable
information about community assembly. In cases in which
spatial or environmental effects operate synergistically with
species interactions to determine the presence and absence
of species (or other interacting biological component such
as a protein or an OTU), a co-occurrence network can be a
valuable object of analysis, albeit at times difficult to inter-
pret due to the influence of indirect interactions and
stochastic processes.

Both ecological and statistical effects can limit the inter-
pretability of co-occurrence networks. As the occurrence of a
given species increases, the probability of detecting a greater
number of statistically significant associations increases as
well. However, these associations may not necessarily corre-
spond to interactions; both the number of true positives and
false positives increases as the occurrence of a species
increases. In terms of the important ecological effects, both
environmental effects, including here recruitment, and species
interactions determine the species range in the intertidal zone.
Consequently, it can be difficult to disentangle which associa-
tions are related to interactions and which are related only to
shared environmental preferences or correlated settlement.
We suggest that environmental and settlement preferences
may possibly outweigh biotic interactions in determining
whole community co-occurrences. This is not to say that envi-
ronment is more important in structuring communities than
biotic interactions but that environmental variability may
leave a more discernable signal in spatial co-occurrence
patterns. Having said this, habitat engineering species and
non-trophic positive interactions may leave a more detectable
signal than other interaction types because they expand or
create niche spaces for the species with which they interact.

In summary, ecological patterns observed in co-occurrence
networks must be interpreted with caution, especially when
extending interaction-based ecological theory to interpret
network variability and stability. Co-occurrence networks
may be particularly valuable for analysis of community
dynamics as an epiphenomenon combining interactions and
environment, rather than simply as the result of pairwise
interactions.
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