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Ecosystems functioning is based on an intricate web
of interactions among living entities. Most of these
interactions are difficult to observe, especially when
the diversity of interacting entities is large and
they are of small size and abundance. To sidestep
this limitation, it has become common to infer the
network structure of ecosystems from time series of
species abundance, but it is not clear how well can
networks be reconstructed, especially in the presence
of stochasticity that propagates through ecological
networks. We evaluate the effects of intrinsic noise
and network topology on the performance of different
methods of inferring network structure from time-
series data. Analysis of seven different four-species
motifs using a stochastic model demonstrates that
star-shaped motifs are differentially detected by these
methods while rings are differentially constructed.
The ability to reconstruct the network is unaffected
by the magnitude of stochasticity in the population
dynamics. Instead, interaction between the stochastic
and deterministic parts of the system determines
the path that the whole system takes to equilibrium
and shapes the species covariance. We highlight the
effects of long transients on the path to equilibrium
and suggest a path forward for developing more
ecologically sound statistical techniques.
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1. Introduction
Species interaction networks offer a quantitative method for understanding the structure and
dynamics of complex ecological systems, e.g. [1,2]. However, in high biodiversity environments,
such as microbial communities, it may be difficult to directly observe species interactions. Instead,
it may be easier to observe temporal and spatial patterns that result from species interactions.
Based on this premise, co-occurrence of species in space and time is increasingly used to infer
networks of species interactions [3–5].

While there is a plethora of metrics to construct networks based on observations of species
distributions in time and space (see [6] for a review of metrics for time series), very few
attempts have been made to verify these metrics, e.g. [7,8] and even fewer to place them
on sound ecological and mathematical footing. Some of the theoretical issues that are largely
unaddressed are how the network architecture affects the ability to detect interactions, what
types of interactions and network motifs are best detected, and whether biological systems fit
the statistical assumptions of the metrics used [9]. A recent study of a number of different tools
for detecting interaction networks found that the tools produced different edges for the same
real and simulated data and that the power to detect interactions depends on the distributions of
species abundance [9,10].

Covariance and correlation are basic methods to quantify pairwise associations. Assuming
that all species have Gaussian distributions, the covariance and the mean value is a complete
descriptor of the species distributions. However, the Gaussian assumption is often not satisfied
and there is not a direct link between correlation or covariance and interactions [7,8]. One way
to relax the assumption of a Gaussian distribution while ensuring that the statistical technique is
not making assumptions about missing data are to use an entropy maximizing method [11,12].
These methods also reduce the effects of indirect interactions or large environmental trends on
the inferred associations. There is a similarity between the maximum entropy metric proposed
by Lezon et al. [11] and the statistical techniques used in press experiments in ecology [13].
An entropy maximizing method does not measure pairwise associations, but instead infers
the most probable whole network structure; the ability to detect relationships involving many
interconnected members is pertinent to the use of this metric.

More than 30 years ago, Peter Yodzis [13] proposed an indeterminacy principle wherein
available statistical techniques were insufficient to experimentally determine species interactions
in natural communities for a large suite of ecological reasons, including indirect interactions and
weak links in species networks. The uncertainty about the ability to detect interactions extends to
null models, another commonly used ecological technique [14,15]. Even with modern statistical
techniques, relationships involving more than three members of a community seem to be nearly
impossible to detect reliably [9,16,17]. We present an updated indeterminacy principle based
on both mathematical and ecological insights. In this study, we use a first principle stochastic
species interaction model to investigate the impact of food web structure on both the dynamics
of communities and the propagation of stochasticity through them and hence on the ability to
detect the network structure of species interactions. We examine the power of three metrics;
covariance, Pearson’s correlation, and inverse correlation to detect species interactions across
a wide parameter space. These metrics are at the heart of most of the network reconstruction
techniques. Unlike previous work [10], we focus on small community modules to gain an
understanding of both the ecological and statistical reasons for trends in performance.

2. Methods

(a) Stochastic species interaction model
We model food webs (interaction networks) using a stochastic differential equation, which is
a generalized Lotka–Volterra model with stochasticity (equation (2.1)). The generalized Lotka–
Volterra model represents the dynamics of biomass in the main system, while the diffusion
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Figure 1. Possible predator–prey networks with four species, when distinguishing between trophic levels. The top predators
are the uppermost species in the network. The arrows showmovement of biomass from prey to predators. The values near each
edge indicate the rate of this interspecific interaction. The parameter d is varied through the simulations.

coefficient represents biomass fluctuations associated with the interactions between the main
system and the environment where it is embedded. This includes not only environmental
variability, but everything that we do not model explicitly in the main system, such as interaction
with species outside the main system and non-trophic interactions with species in the main
system [18]. We modelled the biomass dynamics in the main system assuming that each species
has resources outside the food web that allow it to grow, which prevents extinction at long times
in the stochastic simulation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dXi(t) = Xi(t)

⎛
⎝ri +

N∑
j=1

DijXj

⎞
⎠ dt

︸ ︷︷ ︸
generalized Lotka–Volterra

+
√

γiXi(t)(1 − Xi(t))dW(t)︸ ︷︷ ︸
diffusion

Xi(0), with a given probability distribution μ

(2.1)

where Xi(t) represents the proportion of biomass in species i (or stochastic abundance of species
i) and ri its per capita growth rate in the absence of interspecies and intraspecific interactions.
In addition, let ai denote the strength of interaction. Species interactions are represented by a
symmetric N by N matrix D = (Di,j)N

i,j=1, which, for all i �= j represents the impact of predation
upon the focal species as a biomass loss rate for prey and gain rate for predator. We define
the intraspecific interactions as Di,i = −ai, for all i = 1, . . . , N. The interspecific interactions can
be represented as a network (as in figure 1). The magnitude of the interspecific interaction rates is
given by d. The second term in the right-hand part of equation (2.1) represents interactions of the
main system with the environment, where W(t) is a Wiener or Brownian motion, γi is the intensity
of the fluctuation for all i = 1, . . . , N. And one assumes that the initial distribution μ is known.

One may write the previous equation in vector and integral notation as follows. Let denote X(t)
the column vector with components Xi(t), similarly, call r the vector with coordinates ri, σ (x) the
diagonal matrix with components

√
γixi(1 − xi), where x ∈ [0, 1]N , (i.e. each xi ∈ [0, 1]). Moreover,

let us denote • the Schur (or component-wise) product of vectors. Equation (2.1) becomes:

X(t) = X(0) +
∫ t

0
X(s) • (r + DX(s)) ds +

∫ t

0
σ (X(s)) dW(s). (2.2)
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This model provides considerable insight into the way in which species covary and correlate
with each other. Past work has used similar generalized Lotka–Volterra models, but with
competition rather than predation, to draw conclusions about the influence of niche and neutral
processes in ecological communities [19,20].

A proof of the existence and uniqueness of the solution in distribution Pθ to this general
equation is given in theorem 1 of [21]. Pθ is a probability defined on the set C(R+, RN) of
continuous functions, depending on the parameter θ = (r, D, γ ), where γ is the vector with
components γi. Notice that here we assume a form of the functional diffusion coefficient σ (x)
depending on γ only, which models the rescaled limit of birth and death processes that appear in
a number of ecological and genetics models [18]. This assumption introduces a simplification of
the statistical inference problem.

(b) Model parameters
Predator–prey interactions are modelled using a linear functional response in equation (2.1).
The numerical simulation is performed with forward Euler time stepping. Since the predation
coefficients are symmetric, the loss to the prey in biomass is equivalent to the gain to the predator
in biomass and there is no biomass loss from the system, except due to stochastic fluctuations
(an ‘open system’). We systematically explore the parameter space of the model by varying the
amount of stochasticity from the Brownian term and the ratio of interspecific to intraspecific
interactions.

(i) Interaction motifs

We simulate species interactions for all possible directed food webs with four species. These
motifs are the building blocks from which larger networks are built. Interaction topologies are
shown in figure 1. In the deterministic case, the species grow to an equilibrium in which all
species coexist. The parameters ai and ri are chosen such that all species grow to the same biomass
at equilibrium when there are no interactions. The value of the equilibrium depends on both
intraspecific and interspecific interactions associated with the strength of predation, in other
words, the amount of energy transferred between prey and predators. In order to systematize
the simulations across network geometries, we assign the coefficients ai = 0.05 and ri = 0.5 to the
top predator in the simulation (any species that has no predators). We assign the same coefficients
as above ai = 0.1 and ri = 1 to basal species and intermediate consumers. As a result, all species
have the same carrying capacity in the absence of interactions (ri/ai = 0.1), but the prey species
grow towards this carrying capacity more quickly. If there is more than one species with the same
interactions, we assign different interaction rates so that the species dynamics differ between these
species. In order to explore the effects of the parameter choices, we vary γ , the coefficient for the
stochasticity, between 0 and 0.05. All species have the same stochastic growth coefficient γ , but the
noise is independent. We vary the interspecific interaction coefficient between 0.001 and 0.25. We
simulated 10 000 time series for each parameter combination. We present results from time step
150 to time step 350. There are 20 possible undirected networks for the model with four species
and three links between species. While the food web models are directed, the networks inferred by
correlation and covariance are necessarily undirected. The LIMITS algorithm can detect directed
networks.

(ii) Niche model trophic network

In order to evaluate the implications of the results obtained by studying the dynamics of motifs
in detail, we simulate larger networks using the niche model for trophic networks (food webs)
[22]. This model is a stochastic model that constructs trophic networks that share many of the
properties of observed trophic networks. We specify that the networks have 100 species and are
sparse, with a connectivity of 0.05. There is a continuous spectrum of trophic levels in the model
so we assign the same intraspecific interaction parameters to all species, ri = ai = 0.09. We vary the
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interspecific interaction strength from 0.01 to 1. We assign the same interaction strength to every
link present. We also vary the stochasticity γ . We perform 1000 simulations for each parameter
combination, each with a different randomly generated trophic network.

(c) Network reconstruction
We calculated species covariance matrices from the time series generated by the stochastic

simulations as cov = (Xi − Xi)(Xj − Xj) where · represents temporal averaging. We also calculated
species correlation matrices using Pearson’s correlation coefficient corr = cov/SXi SXj where SXi is
the standard deviation in time of species i. The maximum entropy technique we used is computed
as the inverse Pearson correlation coefficient matrix [11]. This is a more complete descriptor if the
species distributions are Gaussian.

For the four species motifs, we list the top three inferred connections for each network
construction technique (covariance, correlation, and inverse correlation [MaxEnt]). The links with
magnitudes that are above a certain threshold are selected when using the covariance and inverse
correlation techniques. The links with the lowest p-values are selected when using correlation.
For the 100 species network we only present the results using correlation to determine the
links. We selected all links with a p-value below 0.01 when using correlation. We then use
a binomial approximation to assign confidence intervals to the probability of detecting each
possible network.

LIMITS [23] is one of the most successful network reconstruction techniques for time-series
data [24]. LIMITS is designed to reconstruct Lotka–Volterra networks, which are the type of
interactions used in this study. LIMITS generates directed networks while the other metrics
generate undirected networks. We implement this metric using MATHEMATICA code provided
by the authors. We use a threshold for inferring an interaction of 0.01. The results from LIMITS
provide a baseline for success of reconstruction using the other metrics.

(d) Statistical analysis
We used Generalized Linear Models (GLM) [25] to find the relationship between the probability of
finding the true configuration of the network (prob) and its predictive variables the strength of the
relationships (d), the level of noise (gamma), the network motif (network), and the method used to
infer the network structure (Method). We performed logistic regression using each of the predictive
variables in isolation and in combination to predict the probability of detecting the true network.
This quantifies the importance of each of the above factors on the network reconstruction.

3. The statistical problem
Before presenting the results, we outline some expectations about the performance of the
statistical tools from a theoretical perspective. The statistical inference problem consists of the
identification of the probability Pθ that rules the dynamics of the open system described by (2.1).
That probability provides the answer to the query on the network structure as well as a complete
dynamical picture of biomass exchanges between species. This is a hard problem since Pθ is a
probability on an infinite-dimensional space. Pθ represents the state of the whole open system.
In our equation (2.1), the network architecture is carried by the matrix D. That is, one defines a
graph G = (V, E), where V = {1, . . . , N} is the set of species and E the set of edges: {i, j} ∈ E if and
only if Di,j �= 0. What statistical techniques can reliably infer Di,j?

Statistical data have the form of matrices: (X(ωk, t�) : k = 1, . . . , K; � = 1, . . . , L). Notice that one
needs to observe different trajectories (ωk) at any arbitrary finite sequence of times t�). This is
a first difficulty for the application of time-series methods based on correlation and maximum
entropy to estimate Pθ .
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The covariance metric is limited as a measure of the network structure because of the influence
of the noise terms. The expectation under Pθ of X(t) from that equation is given by

Eθ (X(t)) = Eθ (X(0)) +
∫ t

0
Eθ [X(s) • (r + DX(s))] ds. (3.1)

The covariances between components Xi(t) and Xj(t) at a given time t are then

C(Xi(t), Xj(t)) = Eθ

[
(Xi(t) − Eθ (Xi(t)))(Xj(t) − Eθ (Xj(t)))

]

=
∫ t

0
Eθ (σi(X(s))σj(X(s))) ds. (3.2)

Therefore, if i and j are not connected nodes, that is Di,j = 0 one may have C(Xi(t), Xj(t)) �= 0 if
σi(X(s)) and σj(X(s)) are not orthogonal in the space L2(Ω × [0, t], dPθ ⊗ ds).

Using a maximum entropy technique based on the correlations between Xi(t) and Xj(t) to
discover ρt may not be possible in most cases. Under Pθ , one can find a probability density ρt(x)
for each fixed time t:

Pθ (X(t) ∈ A) = μt(A) =
∫

A
ρt(x) dx, (3.3)

for all measurable subset in R
N in the space A. Though, as it is well known, the knowledge of

ρt for all t ≥ 0, does not suffice to identify Pθ . One needs to know an infinite family (μt1,...,tn ) of
measures, where t1 < . . . < tn run over all finite sequences of times, and each μt1,...,tn ) is a measure
on the space (RN)n, such that

μt1,...,tn−1,tn (A1 × . . . × An−1 × R
N) = μt1,...,tn−1 (A1 × . . . × An−1),

the so-called Kolmogorov’s consistency relation. So, under that hypothesis one could prove the
existence of a probability measure Pθ on the set of trajectories, such that

Pθ (X(t1) ∈ A1, . . . , X(tn) ∈ An) = μt1,...,tn (A1 × . . . × An).x

The maximum entropy at each step t1, . . . , tn does not preserve Kolmogorov’s consistency relation
and so cannot be applied to each measure μt1,...,tn . However, the network underlying a Gaussian
process may be relatively detectable. The probability distribution of Gaussian processes is entirely
determined by the covariance kernel and the mean, and it is well known that Gaussian laws
maximize the Shannon entropy among all distributions with second moments. Unfortunately,
as we will demonstrate, our process X(t) here is not a Gaussian one, nor are ecological species
abundance distributions commonly Gaussian. Angulo et al. [26] have also shown that in order
for a network to be reconstructed more information beyond a time series of abundances, such as
information about the interaction functional forms, must be known.

We expect that the covariance, correlation and inverse correlation (maximum entropy) metrics
will not perform well in detecting the whole network structure. Simulations allow us to probe the
limits of the network inference and expose the diversity of ways in which the network inference
depends on the underlying dynamics.

4. Numerical results

(a) Motifs
In order the explore the consequences of these statistical limitations, we perform numerical
simulations of the model system (equation (2.1)). There are 20 possible networks with four species
and three edges (the minimum spanning tree for a four node network), based on combinatorics.
Out of these 20 possible networks, there are seven distinct directed motifs in which all four
species are connected. The networks are referred to by their labels in figure 1. The power to detect
the species interactions is low even for networks that are detected more often than expected by
random chance. True species interactions are typically only detected around 6–10% of the time.
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Figure 2. (a) Sensitivity (true positive rate) of reconstruction technique (b) Specificity (true negative rate) of reconstruction
technique. The sensitivity and specificity are shown as a function of interaction strength d for a selection of network motifs
(colours), reconstruction metrics (line styles) and stochasticity parameters (symbols). The uncertainty ranges are given by the
standard deviation. (Online version in colour.)

Table 1. Parameters leading to the highest probability of detecting the network structure arranged by descending probability.
The F-valueof logistic regressionof eachparameter as apredictor of detecting the truenetwork is shownbelow. The stochasticity
γ is not a significant predictor with an F-value= 3.2049 and Pr(> F)= 0.0740.

d network method predicted prob

0.25 e Cov 0.0898
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 f Cov 0.0884
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 c Corr 0.0646
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 a Corr 0.0571
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 b Invcor 0.0568
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 g Invcor 0.0541
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 d Corr 0.0474
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F-value 33.3005 90.0216 5.0344
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pr(> F) 0 0 0.0068
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since there are 20 unique networks, random detection is 5%. The overall highest probability of
detection is for star networks with more basal species when using covariance to detect interactions
and with a large species interaction coefficient d (table 1 and figure 3).

We summarize the overall performance of the metrics by calculating the sensitivity (or true
positive rate), which is the probability of detecting a link when one exists, and specificity (or
true negative rate), which is the probability of detecting that there is no link when there is no
link (figure 2). This is a common performance metric that can be compared to other studies of
network detection [8–10]. For these networks with three links and four species, if edges are chosen
at random, specificity and sensitivity will, on average, equal 0.5. We find that both sensitivity and
specificity are within 1 s.d. of 0.5 for almost all networks and parameter combinations when using
covariance and correlation metrics. The LIMITS algorithm [23] can be used as a benchmark for the
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performance of the other metrics. With low interaction strengths, LIMITS detects few interactions
but performs slightly better than the other metrics at high interaction strengths. LIMITS has low
specificity, or a high false positive rate for all parameters. The false positive rate is affected by the
detection threshold selected by the user.

The seven interaction networks with four species can be classified into three different types
of systems based on qualitatively similar detection patterns using correlation based metrics
(table 1). Logistic regression best predicts the probability of true network detection when using
a model that includes interaction strength d, the network type, and reconstruction method as
parameters. The model has a Nagelkerke Pseudo R2 of 0.62. The magnitude of stochasticity γ is
not a significant predictor of the probability of detection of the true network. These classifications
by network type also align with the undirected network structure, which is either linear or
star shaped. The linear networks (networks a,c,d) are best detected by correlation, the star
networks with more top predators (networks b,g) are best detected by inverse correlation, and
the star networks with more basal species (networks e,f) are best detected by covariance. In
all cases, the networks are best detected when interspecific interactions are relatively strong
(d = 0.25). Detection power is very low for the linear networks using any association metric.
The linear-type network d is nearly undetectable with a highest predicted probability less
than random.

There is a systematic relationship between the most likely network to be inferred and
the true network, however the most likely network to be inferred is rarely the true
network. The results for three case studies are synthesized in figure 3 the proportion of the
10 000 simulations in which each undirected network was detected with each reconstruction
metric, with three different interaction strengths (0.001, 0.01 and 0.25 biomass−1d−1) and
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two different stochasticity magnitudes (0.005 and 0.05 d−1). For almost all experiments and
parameter combinations, all 20 possible undirected networks were inferred with some non-zero
probability (figure 3).

When the true network is a star-shaped network, the true network is detected across a wider
parameter range when there are more basal species than top predators while a ring with three
species connected and one species unconnected is inferred for motifs with more top predators
(figure 3 top row and electronic supplementary material). For the star-shaped networks, the
complement to the true network is a ring with one species unconnected. The network complement
is purely indirect interactions. Covariance at times has a high probability of detecting the
network complement. For example, with high stochasticity and large interaction coefficients,
the complement of the network with two top predators (network b) is detected in 63% of the
simulations and the complement of the network with three top predators (network g) is detected
in over 99% of the simulations.

Although stochasticity does not significantly influence the probability of detecting the true
network, stochasticity may affect the detection of the true networks through interaction with
the drift term. One way, this may happen is through noise-induced large transients away from
equilibrium. Networks with the potential for large transients away from equilibrium can be
identified by calculating the eigenvalues of the symmetric part of the community matrix D. If the
largest eigenvalue of the symmetric part of the community matrix is positive (figure 4), there is the
possibility for large transient growth [27,28]. The direction of this transient growth is given by the
eigenvector that corresponds to the largest eigenvalues of the symmetric part of the community
matrix. For network b, this vector points most in the direction of species 2, for networks c and f,
this eigenvalue points equally in the direction of species 3 and 4. In all cases with long transients,
one species becomes disconnected and the ring geometry is preferentially constructed. This is
one example of a quantitative evaluation of the way that network structure interactions with the
stochastic drift term may lead to an inferred network that is statistically significant but distinct
from the true network.

The abundance distribution for each species in time is non-normal, with most distributions left
skewed, especially for the top consumer (species 4), and increasingly so as the rate of interspecific
interactions and stochasticity increases. An example abundance distribution for two interaction
strengths is given for three of the four-species interaction networks geometries (figure 5). As this
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figure shows, and all else being equal, network geometry affect the abundance distribution of
species.

(b) Niche model trophic network
With the larger, 100 species networks, we find that the relationship between the correlation
network and the interaction networks depends on the interaction strength. With weak
interactions, there is high sensitivity but low specificity due to overly dense correlation networks.
With stronger interactions, by contrast, both the sensitivity and specificity are low, near 0.5
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(figure 6c). In addition, we find that there is a non-random structure to the correlation networks.
While the interaction networks have the highest interaction density away from the diagonals,
we find that the correlation density is highest on the diagonal of the correlation matrix and
near the edges of the matrix (figure 6d–f ). The networks with large interaction strengths are
prone to transients with positive maximum eigenvalues of the symmetric part of the interaction
matrix.

5. Discussion
There is a low probability of detecting the true interaction network, but we find that it is possible
to detect four-species interaction modules for a wide range of predation rates and especially for
star-shaped interaction geometries. Detection of the true network is robust to stochasticity for all
metrics and, counter intuitively, aided by stochasticity in some cases. We can explain some of the
covariance behaviour through understanding the transient dynamics of the model system.

(a) Ability to detect interaction modules
For most parameter combinations where the true interaction matrix can be detected, it is detected
in at most only 10–11% of the trials. This level of detection of whole modules yields specificity
and sensitivity of about 0.5, which is consistent with the levels of sensitivity and specificity
obtained by other simulation studies [8–10]. These values of sensitivity and specificity would
seem to suggest that edges are selected randomly, however certain motifs are more likely to
be detected than others, namely star-shaped geometries, and certain motifs are consistently
constructed, namely motifs with three species completely connected. For all metrics, there is a
bias against detecting linear networks, which are almost never detected. It is important that we
found that there is some ability to detect the whole network structure with the inverse correlation
technique because the maximum entropy method relies on a reconstruction of the most probable
configuration for the whole network, whereas the correlation and covariance metrics are pairwise
metrics.

(b) Network geometry
The motifs used in this study are prevalent in true ecological and genetic networks. A chain of
length three and a motif with four nodes all connected in a loop was found to occur more often
than expected by chance in ecological networks while an undirected chain of length four, which
is nearly undetectable in our analysis, occurs less often and the star-shaped motif, which is more
easily detectable, occurs more often than expected by chance in a protein interaction network
[29]. The networks used in this study differ from true networks in that true networks are thought
to be more sparse, meaning they have a much lower connectance [30]. This difference might be
expected to affect the total number of edges and hence the specificity and sensitivity.

The network geometry affects which networks are inferred, even if the inferred networks
are not the true network. Researchers may conclude that species networks inferred statistically
(‘association networks’ [8]) are interesting and useful objects to study that have some relationship
to the underlying interaction network structure even if there is not direct correspondence between
the observed associations and true interactions. This result of non-random generation of a
network holds for large interaction networks as well.

(c) Transience and other effects of stochasticity
There is an implicit assumption in the literature that increased noise decreases the ability
to detect interactions within networks [11,31]. Noise or stochasticity in either abundance or
occurrence, however, is an essential assumption behind the use of correlation-based analysis,
since in deterministic environments there is no correlation. Therefore, noise can be exploited to
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make inferences about network structure [32]. We find that the magnitude of the stochasticity is
not a predictor of the success in inferring network structure.

Propagation of stochasticity and of biomass through the web affects the inferred structures.
A few of the networks used (networks b, c and f) have the potential for non-normal growth
of perturbations (as indicted by positive eigenvalues of the symmetric part of the community
matrix), especially with strong interactions between species. Although all species have identical
and independent stochastic diffusion terms, the interaction network directs perturbations
through the web such that certain species may be perturbed away from equilibrium more than
others. This is particularly true of networks that have the potential for non-normal growth.
Stochasticity can have an apparent organizing effect because perturbations are amplified in a
specific direction and recovery to equilibrium is constrained to occur along certain pathways.
In biological terms, we find that the effects of top predators seem to propagate through food
webs, affecting all species present in the system. For example, the network with species 1, 2 and
4 connected in a ring is commonly constructed for a motif with two intermediate consumers
(networks c and d). In these networks, species 1, 2 and 4 are connected in a chain in the true
network. Connection of species 1 and species 4 is meaningful in that it represents a trophic
cascade. Even more strikingly, the network in which all species are connected to species 4 (the top
predator) is constructed by covariance across a wide range of parameters for network d. Species
4 is only connected to species 2 in the true food web. This strong influence of top predators could
be one reason that linear chains are almost never detected—the top predator is likely to covary
with more species than just its immediate prey.

Stochasticity only affects detection if there is interaction between the stochasticity and the drift
terms. In the numerical experiments, we find that γ , the strength of the stochastic noise, is not a
significant predictor of the ability to detect the true network (electronic supplementary material,
table S1).

The Brownian motion used in this study is on a particular (fast) time scale. The functional
form used results in larger magnitude stochastic jumps at intermediate abundances, which could
be another organizing force on the communities because movement towards equilibrium can
generate correlation. Species should on average be at equilibrium and move about it randomly,
but they are knocked farther away due to stochasticity when they are near equilibrium. While
we use uncorrelated Brownian motion in these models, it is possible that the stochasticity alone
could generate covariance if the diffusion terms are not orthogonal.

(d) Comparison of metrics
Covariance is in many cases the most successful metric at detecting species interactions.
However, we find that it is in general the metric that is most likely to detect non-random
structure, including false networks. Consequently, correlation and inverse correlation, which
are normalized by the single species variance at times outperform covariance in detecting
the true network, with the caveat that these metrics infer each of the possible networks with
more uniform probability. The LIMITS algorithm had lower sensitivity than the other methods
when interactions were weak, but increased as interaction strength increases, but within similar
ranges as for the other methods. Specificity, on the other hand remained low, due to the low
threshold necessary for detecting the interspecific interactions when they are weaker than or
the same magnitude as intraspecific interactions. It is important to note that covariance and
correlation only detect symmetric matrices while LIMITS can detect asymmetric matrices. This
may affect the performance of the metrics and affects interpretation of the results. Evaluating
a large network simulated using the niche model [22], which generates networks that are
similar in their properties to observed food webs, and the correlation method, shows that
sensitivity decreases and specificity increases as interactions strength increases. The large values
of associated eigenvalues implies a larger role for transients in affecting the correlation structure.

Inverse correlation removes indirect interactions by minimizing the large-scale trends. In
the simulations presented here, in which there are no deterministic external forcing or ‘hubs’
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controlling species interactions, correlation and inverse correlation perform similarly. The inverse
correlation method might perform better with a more complex network of species interactions.
The covariance metric is able to make use of species relative abundances while the normalization
used by correlation removes this information. As we show in figure 5, species relative abundances
do provide meaningful information on network geometry to the extent that the species abundance
distribution is affected by the network structure. As shown in this figure, the same species under
the same parameters changes in abundance distribution due to network geometry. It is important
to note that the interaction coefficients are symmetric and that adding additional complexity to
this model by working with asymmetric community matrices may alter the reported simulation
results. However, the mathematical exposition is agnostic to the structure of the interaction
matrix.

This study suggests a few paths forward for the development of improved metrics of species
interactions. The metrics currently in use perform best when variables are normally distributed.
While use of correlation does not require that sample values are normally distributed, it is only an
exhaustive measure of association if the joint distribution of the samples is a multivariate normal.
The maximum entropy method used here similarly makes the approximation that the samples
values are drawn from a normal distribution, however the maximum entropy method could be
generalized to be appropriate for the observed abundance distributions. In our case, the samples
(and hence the joint distribution) are not normally distributed, which is true for most communities
[18,33]. Metrics based on the abundance distribution of biological species across different trophic
levels might be better suited for network detection. For example, a linkage disequilibrium metric
in genetics is specialized for beta distributed observations [34]. In addition, this system is in a non-
equilibrium steady state and the absence of detailed balance means that in addition to maximizing
the entropy, understanding entropy production could help to detect the true network. A distinct
approach would be to use parameter estimation or constrained optimization to fit a model to
observed time series.

6. Conclusion
Whole static networks of species interactions are detectable using existing methods for network
inference including a maximum entropy method, but with low probability. Our finding that
specificity and sensitivity do not differ significantly from random while there is non-random
selection of network motifs demonstrates that it is important to consider not only the success in
detecting pairwise interactions but also the way in which correlation metrics may systematically
select certain sets of edges. Counterintuitively, increased stochasticity does not necessarily make
detection of interactions between species less likely. Instead, the path that the system takes to
equilibrium once perturbed is determined by the links between species, however this path does
not necessarily facilitate detection by the existing metrics. Existing metrics have systematic biases.
Indirect interactions may be more likely to be detected than direct interactions, even using inverse
correlation. This is particularly true for systems prone to long transients.

While we focus on the problem of ecological network inference in this paper, network inference
is an important tool in other domains including genetic networks [35,36]. There are many network
inference techniques for researchers to choose including those based on machine learning [37]. We
recommend that the mathematical and scientific basis of each of these techniques be evaluated
carefully before their application in new domains.
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