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Abstract. Biological diversity is essential for the maintenance of the ecosystem functions that
support life on the planet. Inherent to this diversity is the seemingly endless way in which the
biological entities of a natural system interact and affect each other at local and regional scales, con-
forming complex ecological networks permeable to external forcing. Existing approaches to capture
and model such complexity typically make unrealistic or excessively restrictive assumptions. Here
we use concepts from open dynamical systems and metacommunity theory to develop a framework
in which the system dynamics is a function of both interspecific interactions in the focal system
(e.g., a local community of coexisting species) and unobserved biotic and abiotic interactions with
the local and regional environment (e.g., the metacommunity). Species in the focal system interact
through direct exchanges of biomass (i.e., trophic interactions), as well as through altering the acqui-
sition and/or transformation of biomass by other species (nontrophic interactions). Interactions are
affected by environmental fluctuations and by migration and emigration processes, which can take
place at different time scales and can be modeled by stochastic differential equations driven by a
mixture of continuous and discontinuous processes. In this manner, the proposed framework provides
a wider and more flexible representation of the complexity of ecological systems, in comparison with
the closed-system paradigm that isolates the system from the environment. Because the core model
explicitly recognizes the existence of local and regional processes, it is also a natural starting point
to examine spatially structured networks.
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1. Introduction. Living entities are open systems in continuous interaction
with their surrounding environment [1]. They form spatio-temporal ensembles of
interacting individuals, which can be represented as a network whose components are
engaged in the transfer of matter, energy, and information. Ecologists have tried to
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understand the structure and dynamics of these complex networks and, for practical
purposes, have defined arbitrary, spatially delimited local ecological communities as
units of study. It is nonetheless broadly recognized that ecological systems are open,
in the same way as populations and communities are---constantly exchanging matter
and energy with their surrounding environment, and with the larger region in which
they are embedded.

Interestingly, ever since Lotka and Volterra's foundational papers in the 1920s
[2, 3, 4, 5], local ecological communities have been largely modeled as closed sys-
tems undergoing deterministic dynamics, where a few species are engaged with each
other in a given type of interaction (e.g., competition or predation). Such systems
have well-defined equilibria and stability properties (e.g., [6]), which facilitates their
study and provides results that have often given rise to paradigmatic lines of theo-
retical and empirical research (e.g., diversity-stability debate, predator-prey cycles,
alternative stable states). In this framework, however, the environment has seldom
been taken into account, even though, as May [6] recognized, real environments are
uncertain and stochastic. Therefore, the question is not whether the environment is
invariant, but ``When do deterministic models say sensible things about the environ-
mentally stochastic reality, and when do they not?"" [6]. The approach to answering
this question has traditionally been to include the fluctuating environment as another
deterministic component or as an added noise affecting the growth rate or carry-
ing capacity of populations [6, 7, 8]. Our approach here goes beyond that and uses
stochastic processes to model open-system dynamics. That is, we claim that open-
system theory plays a foundational role in stochastic modeling and that this framework
is oftentimes better suited to represent ecological dynamics. This is supported by a
number of well-known theoretical advances. Let us mention, for instance, the mathe-
matical construction of Brownian motion developed within the framework of classical
(or Kolmogorov) probability theory, or in physics, the study of open quantum sys-
tems, based on noncommutative probabilities (see [16, 32, 33]). Furthermore, much
of modern finance is now modeled through stochastic differential equations. In all of
these examples, the dynamics appears as a complex interplay between the observed
main system and its unobserved environment driven by noise. Thus, probabilities
and stochastic processes---in commutative and noncommutative versions---appear as
the adequate mathematical concepts to deal with open systems, including species in
ecological networks.

Moreover, the importance of including different interaction types has been amply
recognized since May's influential paper [9] in 1972, but this has long been consid-
ered a hopeless exercise given the complexity of ecological communities [7]. Only
recently have conceptual advances suggested ways in which combinations of interac-
tions (trophic and non-trophic, positive and negative) can be included in models using
sets of deterministic biomass transformation equations [10, 11, 13]. These pioneering
conceptual and mathematical propositions have shown a path for more theoretical
work, but are nonetheless still based on the deterministic closed-system paradigm.

In sum, current ecological models typically do not take into account that all local
ecological systems are embedded in an environment that not only contains various
interaction types that simultaneously link a given set of species, but is also subject
to stochastic fluctuations in biotic and abiotic conditions that alter birth, death, and
immigration processes of all species, locally and regionally. Furthermore, the question
of different spatial and temporal scales becomes crucial when going beyond trophic
interactions to consider the whole web of interactions taking place in a local ecological
community. Indeed, non-trophic interactions (e.g., mutualistic and competitive) and
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COMPLEX BIOLOGICAL NETWORKS 621

dispersal processes can occur at a different temporal scale than that of trophic ones.
The concepts of a local system and its environment used to define ecological

systems have their correspondence in the main system and reservoir (or environment)
of open dynamical system theory, which has been mostly developed for open quantum
systems [16]. In this contribution, we build upon this analogy and the premise that,
like any natural phenomenon, ecological objects cannot be isolated from their own
motion. In other words, the dynamics of ecological communities is of the open type,
and the observed (or main) system is continuously evolving, always exchanging matter,
energy, and information with its environment, which represents multiple unobserved
interactions. We define a local community as a well-observed set of species living
and interacting in a local area, and subjected to stochastically varying environmental
conditions and biotic interactions with the same or other species living outside the
focal community (i.e., at regional or metacommunity scales). These interactions (with
the environment as well as with other species), and other relevant processes that may
affect the dynamics of the main system or community, occur at different time scales
from very slow or infrequent (e.g., large disturbances, speciation) to very frequent
ones (e.g., competition, predation), which accounts for the complexity of how to
model these different time scales. In a stochastic framework the interaction between
the main system and the environment is usually modeled as a white noise or Brownian
process [6, 7, 14, 15] which represents a single time scale. One way of representing
more than one time scale is by considering L\'evy-type processes which combine fast-
scale continuous perturbations and slow discontinuous ones. In summary, we propose
a general stochastic model for biological networks that can accommodate positive-,
negative-, and neutral-type interactions and more than one time scale.

2. Constructing the model. We use the term state-of-the-system to denote the
biomass probability distribution of different species within the local community. This
marks a departure from the traditional usage of system state in closed systems (e.g
[17]). Thus, our main system is defined by our observed quantities, which are func-
tions of the biomass. Usually, the proportion of individuals of a given species, inside
a population of size N , defines its relative abundance. If the number N of individu-
als of all species grows indefinitely, that proportion eventually gives the probability
distribution of that species (law of large numbers). That is, the biomass probability
distribution of each species---our states---coincides with its relative abundance under
the neutral assumption that all individuals are equal [18].

We consider a main system of d-species---also called the focal system---defining a
graph or network G. Each node i of the graph is a species. Let us denote by xi \in [0, 1]
the proportion of biomass with respect to the carrying capacity of the species i, so
that a vector

x =

\left(   x1

...
xd

\right)   \in E = [0, 1]d

represents the collection of species biomass proportions in the focal system.

2.1. The flow of biomass proportions. Following the custom in probability
theory, we use small letters x, xi to denote the values attained by stochastic processes,
which are denoted by capital letters X(\omega , t), Xi(\omega , t). To alleviate writing, we drop
the \omega , which is always implicit, keeping the variable t only, as in X(t), Xi(t). Our
open-system approach considers the evolution of the biomass via the stochastic process
X(t), with components Xi(t), i = 1, . . . , d, the biomass proportion of each species i
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622 REBOLLEDO, NAVARRETE, K\'EFI, ROJAS, AND MARQUET

(0 \leq Xi(t) \leq 1) or its random relative abundance (RRA). The mean value \BbbE (Xi(t))
corresponds to the mean relative abundance (MRA) of the species i at time t, while
the probability distribution of Xi(t) corresponds to its relative abundance. Thus, the
probability distribution Pt of the vector random process X(t) represents the relative
abundance of the whole focal community at time t. This probability characterizes the
state of the system at a given time. Its evolution is determined by the dynamics of
the flow of biomass, represented by the process X(t), given in the form of stochastic
differential equations, depending on the biomass transfer functions between species.

2.2. Transfer functions. The transfer functions \alpha i,j from node (or species) i
towards the node j (i \rightarrow j) are given in the form

(1) \alpha i,j(x) = ai,j(x)xi (x \in E; i, j = 1, . . . , d).

Hypothesis 1. We assume that the transfer i \rightarrow j depends linearly on the biomass
of the species i, but the rate ai,j(x) depends on the whole focal system biomass. In
this case, we assume that each function ai,j(x) is continuously differentiable and

sup
1\leq i,j\leq d

sup
x\in E

| \alpha i,j(x)| < 1,

for technical reasons. Typically, these coefficients will represent functional responses
or birth and death rates. Throughout this paper, we assume the form (1) for the
family of functions \alpha i,j(x). We call A(x) the d \times d matrix of all the ai,j(x)'s and
diag(A(x)) its diagonal, which contains the net change of biomass per unit time in
isolation, without interacting with other species. Notice that the bound assumed on
the coefficients ai,j(x) leads to supx\in E \| A(x)\| <

\surd 
d, where \| \cdot \| denotes the norm of

d\times d matrices. Finally, let us call A0(x) = A(x) - diag(A(x)) the matrix with 0's on
the diagonal, and denote its components as a0i,j(x) = (1 - \delta i,j)ai,j(x), i, j = 1, . . . , d.

2.3. The interaction with the environment: Fast and slow time scales.
No ecological network will take into account all species in a given focal system or com-
munity, including viruses, bacteria, and other microorganisms as well as macroscopic
multicellular ones. Thus, unobserved or omitted species are also part of the environ-
ment or ``reservoir"" that includes fluctuations in the abiotic environment, and cannot
be dismissed. They interact, changing the transfer functions on the graph. Indeed,
these transfer functions become \alpha i,j(Xt(\omega )) when evaluated on the total focal system
biomass at time t, and Xt(\omega ) is random since its evolution is given by a stochastic
differential equation. Moreover, this stochastic evolution includes two different time
scales for interactions with the environment: a fast one driven by a continuous process
and a slower discontinuous one, associated, for instance, to immigration or emigration
pulses or to extreme climatic events.

Hypothesis 2. Given a quantity x = (x1, . . . , xd) \in E of biomass proportion, we
denote \sigma (x) the vector with components \sigma i(x) =

\sqrt{} 
\gamma ixi(1 - xi), the rate of fluctua-

tions of biomass of species i due to changes of the whole biomass of the system, or
due to temperature or other fluctuations in the environment. We assume 0 < \gamma i < 1
for all i = 1, . . . , d. Thus, 0 \leq \sigma i(x) < 1/2.

To include discontinuous perturbations, we first denote m the vector with compo-
nents 0 \leq mi < 1 representing the mean rate of migration of each species, and we call
\eta (x) the vector with components \eta i(x) = mixi, which is the instantaneous migrated
biomass of the species i.

Hypothesis 3. Correspondingly, two kinds of noises may be used to model the
interactions with the environment: a Brownian motion W for the faster time scale
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and a compound Poisson process Z for the second. They characterize a L\'evy type
of stochastic differential equation [19]. To write differential equations with respect to
discontinuous noises like Z one needs to take care of jumps of trajectories. Below,
for instance, we denote X(t - ) the left-hand limit of X at time t, that is, X(t - ) =
lims<t, s\rightarrow t X(s).

2.4. Evolution of the biomass flow. According to our previous hypotheses
and notation, the biomass evolution within the network is described by the following
stochastic differential equation:

(2)

\left\{             
dXi(t) =

\left(  d\sum 
j=1,j \not =i

\alpha j,i(X(t))Xi(t) - 
d\sum 

j=1

\alpha i,j(X(t))Xj(t)

\right)  dt

+\sigma i(X(t))dW (t) + \eta i(X(t - ))dZi(t), (i = 1, . . . , d),

Xi(0) = xi,

where the column vector x with coordinates xi \in [0, 1] is the initial data, the process
W is a Brownian motion, and Z is an independent compound Poisson process defined
as follows. We denote N a canonical Poisson process, we consider an independent
sequence (\xi i,n)i,n (1 \leq i \leq d; n \in \BbbN ) of identically distributed Bernoulli random
variables with values \pm 1, and we call pi = \BbbP (\xi i,n = 1), qi = 1 - pi. The process Z is
then defined as

(3) Zi(t) =

N(t)\sum 
k=1

\xi i,k, Z(t) =

\left(   Z1(t)
...

Zd(t)

\right)   .

Notice that the mean value of each Zi(t) is \BbbE (Zi(t)) = (pi  - qi)t = (2pi  - 1)t. Given
two vectors x, y \in \BbbR d, we denote x \bullet y the Schur product of these vectors, which is
the vector with components xiyi. Notice that this product is commutative in \BbbR d. So,
the previous equation becomes in vector notation

(4)

\left\{     
dX(t) = X(t) \bullet 

\bigl( 
[AT

0 (X(t)) - A(X(t))]X(t)
\bigr) 
dt

+\sigma (X(t))dW (t) + \eta (X(t - )) \bullet dZ(t),

X(0) = x.

Equivalently, in integral form,

(5)

X(t) = x+

\int t

0

X(s) \bullet 
\bigl( 
[AT

0 (X(s)) - A(X(s))]X(s)
\bigr) 
ds

+

\int t

0

\sigma (X(s))dW (s) +

\int t

0

\eta (X(s - )) \bullet dZ(s).

To summarize, the previous equations rule the dynamics of different species biomass
Xi(t), taking into account their mutual relations determined by the transfer functions
\alpha i,j . In addition, one obtains a description of the evolution of the whole focal system
biomass through the vector process X(t), given an initial value X(0) = x \in E. This
is the flow of biomass.

2.5. The evolution of observables. Moreover, any observation of that system
is given as a function f(X(t)), and a measurement is a mean value of it. In partic-
ular, the function t \mapsto \rightarrow f(t, x) = \BbbE (f(X(t))| X(0) = x), the mean value of f(X(t))
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conditioned to the initial biomass X(0) = x, provides the evolution of the observation
implemented with f . And the probability distribution of the process X(t) (character-
ized by its density \rho t(x)) represents the abundance of species in the focal system at
time t. So, it becomes crucial to prove that there is a solution to (4) (or, equivalently,
(5)). Theorem 1 below is the main theoretical result characterizing the existence of
solutions to the previous system of equations. In addition, the flow of biomass X(t)
is a Markov process, and as a by-product one obtains the equations of Chapman and
Kolmogorov (respectively, Fokker and Planck) characterizing the evolution of both
the observations f(t, x) and the abundances \rho t(x).

3. Existence and uniqueness of the biomass flow and its mathematical
properties. As a first remark, notice that (5) makes sense for a stochastic process
X with values in \BbbR d under the condition \BbbP (X(t) \in E) = 1. This is obvious, since
one needs the coefficient \sigma (X(t)) to be a positive number and, moreover, the process
corresponds to a vector of random proportions of species. Equations like (5) have
been solved under Lipschitz-type conditions on the coefficients. In our case, \sigma (x) is
not Lipschitz and that requires us to approach the distribution of the solution by a
sequence of probabilities (\BbbP N )N\geq 1 solving (5) for regularized coefficients (\sigma (N)(x))N\geq 1

that converge uniformly to \sigma (x) for any x in the compact set E.

3.1. Solving (5) in distribution.

Theorem 1. There exist a probability space (\Omega ,\scrF ,\BbbP ) and a stochastic process
(X(\omega , t))t\geq 0 defined therein, X(\omega , t) \in E almost surely for all t \geq 0, which is a unique
solution in distribution to the stochastic differential equation (4), given X(\omega , 0) = x \in 
E.

Proof. The basic probability space is built up as follows. Call E = [0, 1]d, and
o

E
the interior of the compact set E. Consider the set of all E-valued functions defined
on \BbbR +, which are right-continuous with left-hand limits on every point of \BbbR + (the
so-called cadlag functions). Call this set \Omega , endowed with the Skorokhod topology,
so that each \omega \in \Omega is a function \omega = (\omega (t), t \geq 0), where \omega (t) \in \BbbR d. Let us define
the so-called canonical process as X(t, \omega ) = \omega (t) (t \geq 0).

We define the increasing family of \sigma -fields \scrF t as
\bigcap 

s>t \sigma (X(u), u \leq s), and \scrF =
\scrF \infty = \sigma (Xt, t \geq 0). Furthermore, let us define the stopping time:

(6) \tau E(\omega ) := inf

\biggl\{ 
t \geq 0 : X(t, \omega ) \not \in 

o

E

\biggr\} 
(inf \emptyset = \infty ).

As usual, to prove Theorem 1, a probability \BbbP is constructed on the measurable space
(\Omega ,\scrF ), such that \BbbP (\tau E < \infty ) = 1, so that the stopped process X\tau E = X almost
surely, and the process X satisfies the integral version of equation (4), that is, (5),
\BbbP -a.s.

So, the proof has two parts. First, we work with a sequence of C\infty func-
tions (\sigma N )N\in \BbbN of coefficients which approach \sigma , obtaining a sequence of probabilities
(\BbbP N )N\in \BbbN on \Omega . The second part shows the convergence of \BbbP N to a limit \BbbP which
provides the solution to the original equation.

Construction of the probability \BbbP N . For any bounded measurable function f
defined on [0, 1] and N \in \BbbN , let us define

BNf(x) =

N\sum 
k=0

\biggl( 
N
k

\biggr) 
f

\biggl( 
k

N

\biggr) 
xk(1 - x)N - k.
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Then we consider the vector function

\sigma (N)(x) =

\left(   BN\sigma 1(x1)
...

BN\sigma d(xd)

\right)   (x \in E).

Therefore, each \sigma (N) has bounded derivatives in E and the sequence converges uni-
formly to the continuous function \sigma .

Now, we construct below the probability \BbbP N as the distribution of the solution to
the equation

(7)

X(t) = X(0) +

\int t

0

X(s) \bullet 
\bigl( 
[AT

0 (X(s)) - A(X(s))]X(s)
\bigr) 
ds

+

\int t

0

\sigma (N)(X(s))dW (s) +

\int t

0

\eta (X(s - )) \bullet dZ(s).

This follows as a straightforward application of Theorem 6.2.3 in [19, p. 367]. To this
end, we check the hypotheses of that theorem. These conditions are the Lipschitz
condition (C1) and the growth condition (C2). Call M(t) = Z(t)  - (p  - q)t, where
p (respectively, q) is the vector with pi (respectively, qi) components, t \geq 0. M is a
martingale with zero mean.

Verification of (C1). Denote | \cdot | the Euclidean norm of vectors in \BbbR d and \| \cdot \| the
norm of matrices. Call F (x) = (AT

0 (x)  - A(x))x. This is a continuous differentiable
function, and due to our hypotheses, supx\in E \| F (x)\| < 2d1/2. Consider

(8) b(x) = x \bullet (AT
0 (x) - A(x))x = x \bullet F (x).

The functions \sigma (N) and F have continuous differentials D\sigma (N)(x), DF (x) for all x at

the interior of E. In addition, for all x \in E,
\bigm| \bigm| \sigma (N)(x)

\bigm| \bigm| \leq | \sigma (x)| \leq d1/2

2 . Define

L = sup
x\in E

\Bigl\{ \bigm\| \bigm\| \bigm\| D\sigma (N)(x)
\bigm\| \bigm\| \bigm\| , \| DF (x)\| 

\Bigr\} 
, K = 2d1/2 +

d1/2

2
+ | m| .

Thus, for any x1, x2 \in E,

| b(x1) - b(x2)| 2 = | x1 \bullet F (x1) - x2 \bullet F (x2)| 2

\leq | F (x1)| 2 | x1  - x2| 2 +R2 | F (x1) - F (x2)| 2

\leq (K2 + L2d) | x1  - x2| 2 .(9)

In addition,

| \eta (x1) - \eta (x2)| 2 = | m \bullet x1  - m \bullet x2| 2

\leq K2 | x1  - x2| 2 .(10) \bigm| \bigm| \bigm| \sigma (N)(x1) - \sigma (N)(x2)
\bigm| \bigm| \bigm| 2 \leq L2 | x1  - x2| 2 .(11)

Verification of (C2). In our case, we easily obtain

(12) | b(x)| 2 +
\bigm| \bigm| \bigm| \sigma (N)(x)

\bigm| \bigm| \bigm| 2 + | \eta (x)| 2 \leq 
\bigl( 
2K2 + L2

\bigr) 
(1 + | x| 2) for all x \in E.
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The expressions (9), (10), (11), and (12) guarantee the existence and uniqueness of
a strong solution to (7) according to Theorem 6.2.3 in [19], for each fixed N \geq 1.
This strong solution is constructed as the limit of a Picard-type sequence of processes

(Ym)m as follows. Let x \in 
o

E and define, for all t \geq 0, Y0(t) = x, so that Y \tau E
0 = x = Y0.

Assume Y0, . . . , Ym constructed such that Y \tau E
k = Yk for k = 0, . . . ,m. Then define

Ym+1(t) = x+

\int t\wedge \tau E

0

Ym(s) \bullet 
\bigl( 
[AT

0 (Ym(s)) - A(Ym(s))]Ym(s)
\bigr) 
ds

+

\int t\wedge \tau E

0

\sigma (N)(Ym(s))dW (s) +

\int t\wedge \tau E

0

\eta (Ym(s - )) \bullet dZ(s).

Thus, as in the proof of Theorem 6.2.3 in [19], under the hypotheses (C1) and (C2),
this sequence converges almost surely to a solution Y of the stochastic differential
equation which, in addition, satisfies Y \tau E = Y . Call \BbbP N the probability distribution

of this solution. Then, \BbbP N (X(t) \in 
o

E) = 1.
It is worth noticing for further use that each Ym as a function of t has right-

continuous trajectories with left-hand limits. Moreover, each Ym as a function of
x \in E is measurable.

Solving (5) in distribution. We first notice that

(13) | \Delta X(t)| \leq | m| ,

for all t \geq 0, and almost surely for each probability \BbbP N . Assume a sequence of
uniformly bounded stopping times TN and positive numbers \delta N \downarrow 0. The following
bound holds (mean values taken with respect to the probability \BbbP N ):

\BbbE 
\Bigl( 
| X(TN + \delta N ) - X(TN )| 2

\Bigr) 
\leq 3\BbbE 

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int TN+\delta N

TN

b(X(s))ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  

+3\BbbE 

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int TN+\delta N

TN

\sigma (N)(X(s))dW (s)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  

+3\BbbE 

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int TN+\delta N

TN

\eta (X(s - )) \bullet dZ(s)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  

\leq 3\BbbE 

\Biggl( 
\delta N

\int TN+\delta N

TN

| b(X(s))| 2 ds

\Biggr) 

+3\BbbE 

\Biggl( \int TN+\delta N

TN

\sigma (N)(X(s))2ds

\Biggr) 
+3max

i
| mi| R\BbbE 

\Bigl( 
(N(TN + \delta N ) - N(TN ))

2
\Bigr) 

\leq 3\delta N

\biggl( 
sup
x\in E

| b(x)| 2 + sup
x\in E

| \sigma (x)| 2 +max
i

| mi| R(1 + \delta N )

\biggr) 
.

As a result, \BbbE 
\Bigl( 
| X(TN + \delta N ) - X(TN )| 2

\Bigr) 
\rightarrow 0 as N \rightarrow \infty . And by Chebyshev's

inequality it follows that

(14) \BbbP N (| X(TN + \delta N ) - X(TN )| > \epsilon ) \rightarrow 0 as N \rightarrow \infty , for all \epsilon > 0.
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Since X(0) is fixed, (13) and (14) imply that the sequence of probabilities (\BbbP N )N\in \BbbN 
is tight, so that there exists a convergent subsequence. If necessary, one can choose
a further subsequence to have that \BbbP N(n) converges weakly to a probability \BbbP and

\sigma (N(n))(x) converges to \sigma (x) uniformly on x \in E.
Consider the processes

(15) M (N(n))(t) =

\int t

0

\sigma (N(n))(X(s))dW (s) (t \geq 0).

This is a continuous martingale under the probability \BbbP N(n). Notice that

M (N(n))(t) = X(t) - X(0) - 
\int t

0

X(s) \bullet 
\bigl( 
[AT

0 (X(s)) - A(X(s))]X(s)
\bigr) 
ds

 - 
\int t

0

\eta (X(s - )) \bullet dZ(s).

In addition, for all T \geq 0, it holds that supt\in [0,T ]

\bigm| \bigm| \sigma (N(n)) 2(X(t)) - \sigma 2(X(t))
\bigm| \bigm| \rightarrow 0 in

\BbbP N(n) probability as n \rightarrow \infty . Applying Proposition III.2.4 in [20], under the limiting
probability \BbbP , the process

M(t) = X(t) - X(0) - 
\int t

0

X(s)\bullet 
\bigl( 
[AT

0 (X(s)) - A(X(s))]X(s)
\bigr) 
ds - 

\int t

0

\eta (X(s - ))\bullet dZ(s)

is represented as M(t) =
\int t

0
\sigma (X(s))dW (s) (t \geq 0), so that X solves (5) under the

probability \BbbP .
Finally, the uniqueness of \BbbP follows as in [19, p. 372], by means of a Gronwall-type

inequality. Thus, as a by-product, one obtains that any convergent subsequence of \BbbP N

converges to the same limit \BbbP , and this means that the whole sequence \BbbP N converges
weakly to \BbbP as N \rightarrow \infty . In addition, under \BbbP , the process X is Markov (see, for
instance, [21, Chap. XIII]).

Furthermore, for all t \geq 0, 1 = lim supN\rightarrow \infty \BbbP N (X(t) \in E) \leq \BbbP (X(t) \in E).

3.2. The Markov semigroup. Given x \in E, we denote Px the probability
distribution of the solution to (5) with the initial value X(0) = x. That is, given a
set A \in \scrF , its probability under Px is Px(A) = \BbbP (A| X(0) = x).

As in [19, Thm. 6.4.2], one easily obtains the following corollary, which follows
from the properties of the Picard sequence used in the proof of Theorem 1.

Corollary 1. Under the probability Px, the process X has right-continuous tra-
jectories with left-hand limits almost surely, and moreover, it is a L\'evy process for all
x \in E.

Let us denote (Tt)t\geq 0 the family of applications defined for all bounded Borel
functions f : E \rightarrow \BbbR by

(16) Ttf(x) = \BbbE (f(X(t))| X(0) = x) = Ex (f(X(t))) (t \geq 0, x \in E).

Given x \in E, we consider the operation which consists in modifying its ith co-
ordinate by migrations (c+ corresponds to immigrations, and c - to emigrations): for
each i = 1, . . . , d, define c\pm i (x) = y, where y is the vector with components

(17) yj =

\Biggl\{ 
xj if j \not = i,

0 \vee xi(1\pm mi) \wedge 1 if j = i.
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628 REBOLLEDO, NAVARRETE, K\'EFI, ROJAS, AND MARQUET

The above notation allows us to write jump operators D\pm for all bounded Borel
functions defined on E as follows:

D\pm 
i f(x) = f(c\pm i ) - f(x) and D\pm f(x) =

\left(   D\pm 
1 f(x)
...

D\pm 
d f(x)

\right)   .

Finally, we use the customary notation \nabla for the gradient of a function, and
we denote the scalar product of two vectors u, v as \langle u, v\rangle . Moreover, given a vector

function F with components Fi, i = 1, . . . , d, we write \langle \nabla , F (x)\rangle =
\sum d

i=1
\partial 

\partial xi
Fi(x)

the divergence of F .

Theorem 2. The family (Tt)t\geq 0 is a Markov semigroup that satisfies the Feller
property, that is, Tt(C(E)) \subset C(E) for all t \geq 0 and limt\rightarrow 0 \| Ttf  - f\| \infty = 0, where
\| \cdot \| \infty denotes the uniform norm of the Banach space C(E) of all continuous functions
defined on E. Moreover, this semigroup has an infinitesimal generator L with a
domain D(L) which includes all C2-functions f : E \rightarrow \BbbR , and

(18)

Lf(x) =
1

2

d\sum 
i=1

\gamma ixi(1 - xi)
\partial 2

\partial x2
i

f(x)

+

d\sum 
i=1

\left(  d\sum 
j=1

(aj,i(x) - ai,j(x))xj  - ai,i(x)xi

\right)  xi
\partial 

\partial xi
f(x)

+

d\sum 
i=1

pi
\bigl( 
f(c+i (x)) - f(x)

\bigr) 
+

d\sum 
i=1

qi
\bigl( 
f(c - i (x)) - f(x)

\bigr) 
.

As a result, f(t, x) := Ttf(x) satisfies the backward Kolmogorov equation:

(19)
\partial 

\partial t
f(t, x) = Lf(t, x).

In short-hand notation, for any f \in C2(
o

E), the generator is written as

Lf(x) =
1

2
\langle \sigma (x)\sigma (x)T\nabla ,\nabla f(x)\rangle + \langle x \bullet (AT

0 (x) - A(x))x,\nabla f(x)\rangle 

+ \langle p,D+f(x)\rangle + \langle q,D - f(x)\rangle .

Proof. This theorem is indeed a consequence of the fact that all L\'evy processes
define Feller semigroups; however, we provide here a direct proof. Let PN

x denote
the probability distribution of the solution to (5) starting from x \in E, when \sigma (x) is
replaced by its Bernstein approximation \sigma (N)(x). Then, as proved in [19, Thms. 6.4.5
and 6.4.6], the family TN

t f(x) = EN
x (f(X(t))) is a homogeneous Markov semigroup.

This is indeed a consequence of a measurability property of the map x \mapsto \rightarrow PN
x in

the following sense. Recall that \Omega is the Polish space of cadlag functions with the
Skorokhod topology. The set \Pi (\Omega ) of probabilities on \Omega is endowed with the weak
topology of measures, and \scrB (\Pi (\Omega )) is the associated Borel \sigma -field. So, x \mapsto \rightarrow PN

x is
\scrB (\Pi (\Omega ))-measurable.

Since PN
x converges to Px in the weak topology of probability measures on the

Polish space \Omega , then given any bounded continuous function F , PN
x (F ) =

\int 
\Omega 
FdPN

x \rightarrow 
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Px(F ) =
\int 
\Omega 
FdPx as N \rightarrow \infty . As a result, the map x \mapsto \rightarrow Px is \scrB (\Pi (\Omega ))-measurable

as well. Therefore, (Tt)t\geq 0 is a homogeneous Markov semigroup, too.
The form of the generator (18) follows from a straightforward and customary

application of It\^o's formula to the process X under the probability Px.
Let LN denote the generator of the semigroup (TN

t )t\geq 0 which is indeed of the

same form (18) but with \sigma 2
i (x) replaced by \sigma 

(N)2
i (x). (TN

t )t\geq 0 is a Feller semigroup
as a consequence of Theorem 6.7.2 in [19], because the coefficients of the corresponding
stochastic differential equation are continuous and uniformly bounded on the compact
set E.

Notice that Tt(C(E)) \subset C(E) if and only if for all f \in D(L), it holds that
Lf \in C(E). Then, by a density argument, it suffices to prove that Lf \in C(E) for all

f \in C2(
o

E). Now, due to the compactness of E and the uniform convergence of the
Bernstein approximation of \sigma (x), it holds that

(20) sup
x\in E

\bigm| \bigm| LNf(x) - Lf(x)
\bigm| \bigm| \leq \bigm\| \bigm\| \bigm\| \sigma (N)2(x) - \sigma 2(x)

\bigm\| \bigm\| \bigm\| 
\infty 

\| \Delta f\| \infty < \infty .

As a result Lf \in C(E), since LNf does. Moreover, using that all Tt are contractions,
the definition of the generator, the fact that Lf \in C(E), and the compactness of E,

(21) \| Ttf  - f\| \infty \leq 
\int t

0

\| Lf\| \infty ds \leq t \| Lf\| \infty ;

therefore, limt\rightarrow 0 \| Ttf  - f\| \infty = 0. As a result, the semigroup is Feller.

Compactness of E allows us to obtain additional properties for our model. There
exist in particular regular conditional probabilities, so that the semigroup can be
represented as

(22) Ttf(x) =

\int 
E

Pt(x, dy)f(y)

for all bounded Borel functions on E, where Pt(x, dy) = Px(Xt \in dy) is a Markov
transition probability kernel.

The dual space of the Banach space C(E) is the space of Radon measuresM(E) =
C(E)\ast . Thus, one defines the dual semigroup (T \ast 

t )t\geq 0 acting on a measure \mu \in M(E)
by the equality

(23)

\int 
E

T \ast 
t \mu (dx)f(x) =

\int 
E

\mu (dx)Ttf(x) =

\int 
E

\mu (dx)

\int 
E

Pt(x, dy)f(y) (f \in E).

Further, a measure \mu is invariant if T \ast 
t \mu = \mu for all t \geq 0, that is,

\int 
E
\mu (dx)Ttf(x) =\int 

E
\mu (dx)f(x).
For any x \in E, (Pt(x, \bullet ))t\geq 0 is a family of probability measures on the compact

set E, so they are relatively weakly compact or tight. And, any limit point is an
invariant measure. Therefore, in our case we have the following.

Corollary 2. There exists at least an invariant probability measure under the
action of the dual semigroup (T \ast 

t )t\geq 0.

3.3. Stability: Conditions for recurrence in 0 (extinction of species).
Within this section we look for sufficient conditions to have the extinction of a subpop-
ulation (Xi(t, \omega ); i \in I) of species (I \subset \{ 1, . . . , d\} ). Consider the following additional
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hypothesis on the rate functions of our model:

(Ext(I))

\left\{       
For any x \in E and all i \in I, the following inequality holds:

d\sum 
j=1

(a0j,i(x) - ai,j(x))xj + (pi  - qi)mi \leq 0.

To analyze the recurrence in 0 of the biomass flow Xi(t, \omega ) for all i \in I, we consider
the stopping times

(24) DI
r(\omega ) := inf

\left\{   t \geq 0 :

\Biggl[ \sum 
i\in I

| Xi(t, \omega )| 2
\Biggr] 1/2

\leq r

\right\}   (0 < r < 1)

and

(25) \tau I(\omega ) = inf \{ t \geq 0 : X(t, \omega ) = 0, i \in I\} .

Theorem 3. Under the hypothesis (Ext(I)), it holds that

(26) \BbbP x(D
I
r < \infty ) = 1

for all x \in E, all 0 < r < 1. As a result, \BbbP x(\tau I < \infty ) = 1; that is, the species labeled
by i \in I go to extinction. If I = \{ 1, . . . , d\} , then 0 is an absorption point for the whole
Markov process (X(t))t\geq 0, and all the population eventually disappears.

Proof. Assume there exists a vector \lambda \in E such that \lambda i > 0, i \in \{ 1, . . . , d\} \setminus I,

\lambda i = 0 for i \in I, and
\sum d

i=1 \lambda i = 1. Define V (x) = \langle \lambda , x\rangle (x \in E). Let us define
the stopping time SR(\omega ) := inf \{ t \geq 0 : \langle \lambda ,X(t, \omega )\rangle \geq R\} . Since X(t) \in E with
probability 1, SR \rightarrow \infty , \BbbP x-a.s. if R \rightarrow \infty for all x \in E.

A straightforward computation shows that

LV (x) = \langle \lambda , b(x)\rangle + \langle \lambda , (p - q) \bullet \eta (x)\rangle 
= \langle \lambda , b(x) + (p - q) \bullet \eta (x)\rangle 

=

d\sum 
i=1

\lambda i

\left\{   xi

\left[  d\sum 
j=1

(a0j,i(x) - ai,j(x))xj + (pi  - qi)mi

\right]  \right\}   
\leq 0.

From It\^o's formula we obtain that the process V (X(t)) is a positive supermartin-
gale. By Doob's stopping theorem, we obtain

V (x) \geq \BbbE x(V (X(SR \wedge Dr))) \geq 
\int 
\{ SR<Dr\} 

V (X(SR))d\BbbP x = R\BbbP x(SR < Dr).

Therefore, \BbbP x(SR < Dr) \leq V (x)/R. Now, letting R \rightarrow \infty , we obtain \BbbP x(D
I
r = \infty ) =

0, so that \BbbP x(D
I
r < \infty ) = 1.

Clearly, DI
r \leq \tau I for all 0 < r < 1, so that the supermartingale property and

Doob's theorem imply again that

V (x) \geq \BbbE x(V (X(SR \wedge DI
r)))

\geq \BbbE x(V (X(SR \wedge \tau I)))

\geq 
\int 
\{ SR<\tau I\} 

V (X(SR))d\BbbP x

= R\BbbP x(SR < \tau I).

D
ow

nl
oa

de
d 

06
/1

7/
19

 to
 1

46
.1

55
.2

15
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLEX BIOLOGICAL NETWORKS 631

Thus, letting R \rightarrow \infty yields \BbbP x(\tau I = \infty ) = 0, so that \tau I is finite almost surely, which
means that all species labeled by i \in I go extinct.

If I = \{ 1, . . . , d\} , this implies that X(t)1\{ t>\tau I\} = 0 almost surely. That is, 0 is
absorbing for the biomass flow, so there is extinction of all the species in a finite time
\tau \{ 1,...,d\} .

4. Examples and simulations. For the numerical examples, we consider net-
works classified into three level sets: basal species, which commonly correspond to
autotrophs or primary producers, intermediate species, which can be considered her-
bivores, and a top carnivorous species. We consider that the trophic biomass transfer
from species i to j (i \rightarrow j) is given by the following coefficient function (cf. section 2.2):

gij(u) =
Aij

1 +Biju
,

where Aij > 0 denotes the attack rate (including searching, pursuing, and capturing)
and Bij > 0 denotes the handling time (including consumption) of the j-species
with respect to the i-species, respectively. In addition, we consider constant ``death""
(biomass loss) rates Di, which can be viewed as a basal metabolic rate necessary
for the organism maintenance. We assume that basal organisms generate their own
biomass, and therefore this biomass generation, in the absence of consumption, is
taken as a negative death rate Di < 0, while for heterotrophs it is taken as a positive
death rate Di > 0, indicating that they do not generate their own energy. In our
context, trophic interactions are represented through the following matrix function
A(x) (see section 2.2):

aij(x) =

\biggl\{ 
Di/xi if i = j,
gij(xi) if i \rightarrow j.

We note that this general trophic interaction model can be easily extended to non-
trophic interactions, as shown in section 4.1.

4.1. A three-species model. To illustrate the dynamic attributes and flexibil-
ity of this general framework, as a first example, we consider two types of three-species
open-system models representing ecological networks with three interacting species:
an autotroph (x1), an herbivore (x2), and a top predator (x3) (see Figure 1). In the
figure, model (a) represents a canonical tri-trophic food web (TI) used in many food
web theoretical studies (e.g., [22]). Model (b) includes, in addition to the trophic
interactions, a non-trophic one (NTI), where the autotroph modifies the interaction
between the predator and herbivore, for instance, through providing refuge.

The non-trophic interaction in model (b) is represented by a coefficient func-
tion n\varepsilon (x1, x2) = exp( - \varepsilon x1)g23(x2) representing an exponential decay of the attack
coefficient for the predator in the presence of the autotroph.

Remark 1. Notice that, for \varepsilon = 0, one recovers model (a), since n0(x1, x2) repre-
sents a trophic relation between the heterotrophs. In fact, n0(x1, x2) = g23(x2).

The corresponding matrix A(x) representing the biomass transfer coefficients
ai,j(x) is given in Table 1.

Remark 2. A straightforward computation shows that, under the above assump-
tions, the ith species satisfies the hypothesis (Ext(I)) if the condition number condi
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autotroph

herbivore

predator

trophic
interaction
g12(X1(\omega ))

trophic
interaction
g23(X2(\omega ))

(a) TI model: Trophic interactions only.

autotroph

herbivore

predator

trophic
interaction
g12(X1(\omega ))

non-trophic
interaction

n\varepsilon (X1(\omega ), X2(\omega ))

(b) NTI model: An NTI affects the attack
rate of the top predator.

Fig. 1. Three-species submodules of a metacommunity: Xi(\omega , t), i = 1, 2, 3, are, respectively,
the biomasses of the autotroph, the herbivore, and the top predator, engaged in strictly and exclusively
consumptive or trophic interactions (TI model (a)) and in trophic as well as non-trophic interactions
(NTI model (b)). The NTI can be visualized as refuges from predation provided by the autotroph.

Table 1
A(x) matrix for the three-species network submodule.

Matrix A(x)
D1/x1 g12(x1) 0

0 D2/x2 n\varepsilon (x1, x2)
0 0 D3/x3

is nonpositive, where

cond1 =  - D1  - (1 - 2p1)m1, condi = A(i - 1)i  - Di + (1 - 2pi)mi for i = 2, 3.

For the numerical simulations, we consider the parameter values given in Table 2.
For the NTI models, we additionally consider (in all cases) \varepsilon = 0.8. When incorpo-
rating the environmental effects, we consider (in all cases) the diffusion coefficients
\gamma = [0.0001, 0.001, 0.01] and 10000 independent samples to estimate the MRA. Fur-
thermore, to avoid trivial extinctions (see Remark 2), we consider several cases of
migration rates mi, with probabilities pi, which are detailed below. Finally, results
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Table 2
Predator attack coefficients (Aij), prey handling times (Bij), death rates (Di), and initial

conditions (Xi(0)) used in the simulations.

Aij Bij Di Xi(0)

A12 = 0.35
A23 = 0.2

B12 = 0.1
B23 = 0.7

D1 =  - 0.19
D2 = 0.05
D3 = 0.08

X1(0) = 0.3
X2(0) = 0.5
X3(0) = 0.8

(a) x1(t). (b) x2(t).

(c) x3(t). (d) x2(t) vs. x1(t).

Fig. 2. (a)--(c) Bounded temporal dynamics of the biomass flow of each species in the absence
of noise for the TI (blue) and NTI (red) models. (d) x2 vs. x1 plot of the closed unstable cycle
obtained starting from a sufficiently large generational time in both models.

are expressed in terms of the predator generations, i.e., time scaled by D3.
First we notice that under the assumption of a closed network set of interactions,

i.e., in the absence of noise, the particular election of parameters given in Table 2
generates rapid, large periodic oscillations of the autotroph and herbivore, and the
extinction of the carnivore (Figures 2(a)--(c)). That is, the closed system is dramat-
ically unstable. Apart from the fact that the carnivore goes extinct faster when an
NTI is included in the model (Figure 2(c)), the existence of the non-trophic interac-
tion does not alter model behavior or final conclusions. It should also be noted not
only that the closed system shows periodic oscillations (Figure 2(d)), but that the
trajectory of x2 is not smooth, i.e., the dynamics is not derivable.

The violent oscillation trajectories observed in these simple model systems disap-
pear when considering the interaction with the environment, i.e., when opening the
system by adding noise (Figures 3--5). As can be appreciated in Figure 3, simply con-
sidering a small perturbation of mi = 0.001 with probabilities pi = 0.5, for i = 1, 2, 3,
qualitatively changes the model behavior, generating dampened smooth oscillations
(cf. Figure 3(d)) of the mean proportion of biomass flow, or mean relative abundance
(MRA), i.e., both autotroph and herbivore coexist stably (Figures 3(a),(b)). Very
small levels of migration, with equal probability of emigration or immigration, help
stabilize trajectories but are not sufficient to rescue the carnivore from extinction.
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(a) \BbbE (X1(t)). (b) \BbbE (X2(t)).

(c) \BbbE (X3(t)). (d) \BbbE (X2(t)).

Fig. 3. (a)--(c) Mean temporal dynamics of the biomass flow of each species, when noise is
considered to reflect interactions with the environment, for the TI (blue) and NTI (red) models. Plots
obtained considering migration rates m = (0.001, 0.001, 0.001) with probability p = (0.5, 0.5, 0.5) and
10000 independent samples. (d) Zoom of the mean temporal dynamic of the second species in the
generational time interval [0, 20]. The time axis considers up to 80 generations of the predator
species. cond = [0.19, 0.3, 0.12].

As in the closed-system case, the models with and without an NTI exhibit similar
behaviors, although there is faster extinction of the carnivore when the autotroph
reduces the carnivore's capture rate of the herbivore.

The importance of migration on local community dynamics is clearly depicted in
Figures 4 and 5. In Figure 4, the same model systems are now examined under the
rates of migration m = (0.001, 0.001, 0.02) with probability p = (0.5, 0.5, 0.98), i.e.,
with a high probability of immigration for the third species. This condition, where
the population in a local community has a probability of infrequent but still posi-
tive immigration of biomass from the metacommunity, generates strikingly different
behaviors. The local submodule of species exhibits damping oscillations towards a
stable three-species configuration. Interestingly, these low levels of immigration are
sufficient to allow coexistence of the top predator in the tri-trophic food web model,
but not when an NTI is present (Figure 4(c)), highlighting the potential effects of
NTIs in favoring or preventing local species coexistence. In Figure 5, we consider
rates of migration m = (0.15, 0.001, 0.001) with probability p = (0.02, 0.5, 0.5), i.e.,
with a high probability of emigration for the autotroph species. Contrary to the pre-
vious example, here very similar dynamics are obtained for models with and without
NTI, predicting a finite time of extinction for the herbivore and top predator, while a
logistic-type asymptotic behavior is predicted for the autotroph. Further exploration
of parameter space and of different types of interactions is needed to reach conclusions
regarding the role of NTI in ecological networks.

Notice that the numerical examples confirm that the (Ext(I)) hypothesis is only
a sufficient condition for the extinction of the species. Indeed, Figure 5 shows that,
even if not satisfied for any species, extinction for the herbivore and the predator
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(a) \BbbE (X1(t)). (b) \BbbE (X2(t)).

(c) \BbbE (X3(t)).

Fig. 4. (a)--(c) Mean temporal dynamics of the biomass flow of each species for the TI (blue)
and NTI (red) models. Plots obtained considering migration rates m = (0.001, 0.001, 0.02) with
probability p = (0.5, 0.5, 0.98) and 10000 independent samples. The time axis considers up to 80
generations of the predator species. cond = [0.19, 0.3, 0.1008].

(a) \BbbE (X1(t)). (b) \BbbE (X2(t)).

(c) \BbbE (X3(t)).

Fig. 5. Mean temporal dynamics of the biomass flow of each species in the system for the TI
(blue) and NTI (red) models. Plots obtained considering migration rates m = (0.15, 0.001, 0.001)
with probability p = (0.02, 0.5, 0.5) and 10000 independent samples. In this case, autotroph biomass
is exported from the system, leading to extinction of the herbivore and carnivore. The time axis
considers up to 80 generations of the predator species. cond = [0.046, 0.3, 0.12].
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is possible, while Figures 3 and 4 show that extinction for the third species is also
possible even if it is not satisfied for this species.

4.2. A complex network model. The ability of the proposed framework to
model complex networks is demonstrated here by modeling a food web formed by 104
species of marine intertidal organisms (Figure 6(a)). The food web corresponds to
the rocky intertidal community observed in wave-exposed rocky shore environments of
central Chile, where most trophic interactions have been documented with an unusual
level of detail (see [12]). For simplicity, we do not consider cannibalistic links. While
modeling such large networks using deterministic approaches usually represents an
important challenge (cf. [23, 25, 24, 26]), we show that the open-system approach can
easily model this food web and allows for exploration of different parameter configu-
rations leading in both simulations A and B in Figure 6 to coexistence of the great
majority of species, albeit with contrasting trajectories.

(a) Intertidal food web.

(b) Simulation A. (c) Simulation B.

Fig. 6. (a) Representation of the intertidal food web composed of 104 species with a total of 1346
trophic interactions (see [12] for details). (b) Mean temporal dynamics for a simulation considering
the set of parameters A in Table 3. (c) Mean temporal dynamics for a simulation considering the
set of parameters B in Table 3. Yellow lines correspond to basal, blue to intermediate, and red to
top species, respectively.

5. Discussion. Our approach envisions ecological systems as open systems that
are continuously being affected by nonobserved interactions with other species and
the environment (see also [27, 28]), and which naturally lend themselves to the intro-
duction of stochastic processes at the outset to model the basic evolution equations.
It also includes in its foundations the notion that local systems are not isolated from
regional processes such as migration, speciation, and nutrients flows [29, 18, 30].

The implications of the open-system approach are severalfold. First, it provides a
different philosophical view of ecological community dynamics. While a fundamental
characteristic of closed systems is their conservation of energy, open systems instead
are inherently dissipative and irreversible. While closed systems presuppose that one
knows every single variable affecting the system dynamics, the open-system paradigm
takes it as a given that we will never be able to have a complete knowledge of the
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Table 3
Parameter values used in the simulation of the complex network (Figure 6). Each species was

randomly assigned a parameter value within the range specified in the table, and according to its
trophic level. In model A, Nj represents the total number of species consumed by the j-species. In
both simulations, we consider the diffusion coefficients \gamma i equal to 0.0001, 0.001, and 0.01 for basal,
intermediate, and top species, respectively, and arbitrarily chosen migration rates mi \in [0, 0.2], with
random probabilities pi \in [0.4, 0.6].

Model A

Aij Bij Di Xi(0)
Basal [ - 0.02,  - 0.002] [0.1, 0.2]

Intermediate [0, N - 1
j ] [0, 1] [0.01, 0.06] [0.3, 0.8]

Top [0, N - 1
j ] [0, 1] [0.01, 0.06] [0.4, 0.7]

Model B

Aij Bij Di Xi(0)
Basal [ - 0.1,  - 0.002] [0.001, 0.06]

Intermediate [3, 4] [0.2, 1.5] [0.01, 0.06] [0.002, 0.09]

Top [6, 7] [5, 10] [0.01, 0.06] [0.005, 0.3]

phenomenon under study. Thus, it is crucial to distinguish between observable and
nonobservable quantities. For instance, in our model, functions of the biomass of
species in the focal system are observables (e.g., transfer functions \alpha ij), while the
events of migrations, rapid fluctuations due to environmental changes, and speciation,
among others, are not observables. This requires the use of noises to describe the
interactions between the observed focal system and the unknown local and regional
environment.

Second, from a mathematical point of view, there are many tools and extensive
literature to deal with appropriate differential equations to describe closed systems,
and to explore related concepts such as stability of solutions. The open-system ap-
proach proceeds via a dilation of basic spaces, i.e., adding a probability space to the
set where the system dynamics takes place, introducing stochastic processes and their
probability distributions. Thus, stability takes on a completely different meaning (see
[44]). For open systems, the qualitative analysis focuses on the existence of invariant
or stationary probability measures \mu , and as we mention in our Corollary 2, in our
case there exists at least one. However, to find an explicit expression for \mu is a non-
trivial task, which will be developed in a future contribution for some special classes of
models. Moreover, not all stationary probabilities represent equilibrium distributions,
which require additionally that there be zero entropy production or, equivalently, that
the system become reversible [31, 32, 33].

Third, there are many ways to open a closed-system representation of nature,
and this generally is much more involved than simply adding a noise term to stan-
dard differential equations. Indeed, one needs to look first for a characterization of
the transfer of energy, mass, or information between the main system and the envi-
ronment based on so-called first principles. For instance, the diffusion coefficient of
the ``logistic"" form is inspired and developed from a neutral approach to a wide class
of conveniently rescaled birth and death processes, which all converge to a similar
diffusion (see [34], as well as [35, 36]). Yet, there is still room for improvement in this
matter. Indeed, the use of the same diffusion coefficient in our model assumes that
each species is suffering very frequent energy-mass interactions within the environ-
ment as a whole (including climate changes, temperature, and other species globally),
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which depend only on their specific biomass. The effects of introducing short-time
fluctuations through Wiener noises for each species separately must still be explored
in more detail. Poisson noises model longer time scale interactions and have been
used here to include migrations. Evidently, new refinements could consider more real-
istic approaches to these slow-pace processes in comparison to white noise, including,
for instance, speciation through branching processes. The importance of different
time scales in ecological dynamics is fundamental [37], and the stochastic framework
proposed here provides a simple way of including time scale diversity into ecological
networks of organisms interacting simultaneously in different ways among themselves
and with their environment.

As we mentioned before, open systems are typically dissipative. This implies
that in general species go extinct within the focal system, unless one includes explic-
itly a recovery force, such as the dynamics of the autotroph in our examples, which
generates its own biomass through photosynthesis, or imports the biomass from the
metacommunity or reservoir through immigration. Thus, in a number of cases this
opening approach regularizes irregular or even chaotic trajectories when some mod-
els of species interactions are written as a closed system, like the tri-trophic food
web model analyzed here. As we show, the same food web model, with or without
NTI, produces smooth trajectories in the stochastic form. Moreover, if small levels of
immigration are allowed, the model can produce stable coexistence of all species.

Random fluctuations are ubiquitous across living systems because of the prob-
abilistic nature of the interactions underlying the transfer of energy, matter, and
information, and because of the open nature of living systems, which in their inordi-
nate complexity constrain us to work only with parts (e.g., main systems) instead of
wholes. As already mentioned, everything else that affects the dynamics of the main
system, and is not explicitly included in it, is envisioned as random environmental
fluctuations or noises. During recent decades network theory has become a powerful
approach to understanding the dynamics of matter, energy, and information across
a wide diversity of complex systems [38], and stochastic approaches have become
prominent in the analysis of gene and neural networks [39, 40] but less so in ecological
systems. Part of the challenge of applying stochastic approaches to ecological net-
works lies in the variety of interactions and types of entities (the multilayer structure
[41]) as well as in the several time scales involved. Our general stochastic framework
is intended to alleviate these limitations.

To summarize, we contend that our approach provides a unified stochastic frame-
work to deal with trophic and non-trophic interactions in open ecological networks.
Our simulations are only intended to illustrate the capacity of the framework to model
such interactions and observe population biomass trajectories. Further research is in-
deed needed to reach general conclusions regarding not only non-trophic interactions
in ecological webs, but also the role of regional processes in ecological network at-
tributes. To this end, the mathematical model as well as the corresponding codes
developed here provide a suitable ``virtual laboratory"" to start analyzing different
forms of trophic and non-trophic interactions, within realistically complex ecological
webs, such as the ones that are now being empirically described [42, 43], a task that
should occupy network ecologists in the coming years.
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