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Abstract
We propose a stochastic model for interacting species in a metacommunity in order to study the factors affecting the intensity
of the competition/colonization trade-off as a coexistence mechanism in metacommunities. We particularly focus on the
role of the number of local communities and the number of refuges for the inferior competitor. The stochastic component is
associated with the dispersal process and is represented by Poisson random measures. Thus, this stochastic model includes
two dynamic scales: a continuous one, which refers to the interactions among species, and a low frequency one, referring to
dispersal following a Poisson scheme. We show the well-posedness of the model and that it is possible to study its long-term
behavior using Lyapunov exponents; the extinction of a species is associated with a negative slope in the time trajectory of
the Lyapunov exponent, otherwise, it is equal to zero. We show that the competition/colonization trade-off is a function of
the dispersal rate of the inferior competitor, and that it becomes less intense as the number of local communities increases,
while the opposite is true with an increase in the number of refuges for the inferior competitor. We also show that under
a priority effect type of scenario, dispersal can reverse priority effects and generate coexistence. Our results emphasize the
importance of coexistence mechanisms related to the topology of the system of local communities, and its relationship with
dispersal, in affecting the result of competition in local communities.

Keywords Metacommunity · Island biogeography · Lotka-Volterra model · Poisson measure · Lyapunov exponent ·
Trade-off · Priority effect

Introduction

Coexistence and diversity in local communities connected
by dispersal, or metacommunities, have been shown to be
associated with the interplay between local and regional
processes (e.g., Ricklefs 1987; Hanski 1982; Cornell and
Lawton 1992; Holt 1993; Loreau and Mouquet 1999;
Hubbell 2001). Prominent among the first are density-
dependent process associated with interspecific (e.g.,
competition and predation) and intraspecific interactions
(e.g., Allee effects, intraspecific competition) as well as
the spatial and temporal variation in abiotic conditions
and the matching between species life-histories and habitat
templates (e.g., Southwood 1977).
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Theoretical and experimental studies have demonstrated
that the spatial structure of habitats (e.g., size and distance
among patches), their temporal dynamics and their hetero-
geneity in quality, are important components of habitats
templates that affect persistence in metapopulations (e.g.,
Marquet 1997; Hanski and Ovaskainen 2000; Keymer et al.
2000) and coexistence in local communities (Chesson 1994;
Neuhauser and Pacala 1999; Bolker and Pacala 1999; Ches-
son 2000; Murrell and Law 2003) and metacommunities
(e.g., Forbes and Chase 2002; Holyoak 2000; Mena-Lorca
et al. 2006). These effects are mediated by the interac-
tion between species life-histories and the spatio-temporal
characteristics of their habitats and in particular by those
life-history traits that affect dispersal and competitive abil-
ity, which in turn affect both colonization and extinction
rates. Dispersal, in particular, is fundamental to account
for coexistence and diversity in metacommunities, through
a series of mechanisms such as rescue effects, source-
sink dynamics, by mechanisms intrinsic to dispersal itself
(Aiken and Navarrete 2014), and by trade-offs between
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competitive ability and dispersal (Amarasekare et al. 2004).
This latter mechanism has been repeatedly shown to foster
coexistence in competitive community and metacommunity
models (e.g., Levins and Culver 1971; Hastings 1980; Nee
and May 1992; Tilman 1994; Durrett and Levin 1998; Ama-
rasekare 2003; Amarasekare 2004; Calcagno et al. 2006)
and also in microcosm experiments (e.g., Cadotte 2006).

It is known that spatial heterogeneity, either in species
competitive ability or habitat quality, are important in
fostering coexistence in metacommunities (Amarasekare
et al. 2004), what it is less known, it is how the spatial
structure of local communities (i.e., habitat patches in
a landscape or islands in an archipelago) may affect
coexistence and diversity. MacArthur and Wilson (1967) do
talk about the role of island clumping in affecting species
area curves and more recently experimental evidence
(Forbes and Chase 2002) and neutral models (Economo
and Keitt 2008; 2010) have analyzed the impact of the
spatial structure or network of interacting communities
on diversity patterns. These authors show that spatial
structure does have an important impact on metacommunity
diversity, however, little is known on the role of spatial
structure in affecting the effectiveness of mechanisms that
traditionally have been used to explain coexistence in
metacommunities, such as the competition dispersal trade-
off. In this contribution, we propose a stochastic model
to understand the role of metacommunity spatial structure
on the strength with which the competition/colonization
trade-off promotes coexistence.

Introducing stochasticity and dispersal
in metacommunities

The competition/colonization trade-off implies large differ-
ences in dispersal and competitive abilities among species.
Dispersal is quintessentially stochastic, so the first challenge
we tackle is how to develop a model for species interactions
that includes dispersal as a stochastic process. Stochas-
tic models and approaches are becoming increasingly used
to understand ecological dynamics, as they may provide
a better representation of biological important phenomena
such as evolution, extinction, coexistence and noise-induced
dynamics (e.g., Richter-Dyn and Goel 1972; Chesson 1982;
Dieckmann and Law 1996; Ovaskainen and Meerson 2010;
Marquet et al. 2014; Boettiger 2018). They represent a nat-
ural way of studying open systems, that is, systems that are
affected by fluctuations associated with interactions with
other entities, as well as with the environment wherein
they are immersed. Open systems are by definition partially
specified or incomplete systems, whose analysis do not con-
sider all possible variables or entities that could affect its

state and dynamics; in these cases, the external fluctuation
associated with the unknown or hidden variables affecting
the focal system dynamics, can be represented by noise
terms (Marquet et al. 2017; Rebolledo et al. 2019). Simi-
larly, one could include a particular type of noise or stochas-
tic process to represent the impact of a given source of
stochasticity, such as demographic stochasticity (Schreiber
2017), the impact of switching conditions in habitat
quality (Luo and Mao 2007), or dispersal as proposed
herein.

It is a common practice to study the impact of stochastic-
ity in species interaction using Lotka-Volterra type models
where error terms in the estimation of parameters (such as
growth rates or interaction coefficients) or random pertur-
bation in their values, as a consequence of environmental
or other sources of stochasticity, can be represented by a
continuous white noise in the form of a standard Brown-
ian motion (e.g., Mao et al. 2002; Mao 2007; Du and Sam
2006; Li and Mao 2009; Hening and Nguyen 2018b; Hen-
ing and Nguyen 2018a; Xiong et al. 2019) or by including
a Brownian and a jump process represented by a Pois-
son measure that accounts for the existence of sudden and
discrete events or perturbations (e.g., volcanic eruptions)
(see Bao et al. 2011; Rebolledo et al. 2019). In particular,
in Rebolledo et al. (2019), the Brownian is thought of as
representing rapid continuous environmental fluctuations,
while the Poisson measure accounts for discrete events such
as dispersal. In this contribution, we model dispersal as a
Poisson process to understand its role in metacommunities,
or collections of communities linked by dispersal (Wilson
1992; Leibold et al. 2004) such as island archipelagos. As
we exemplify below using the classical birth-death pro-
cess underlying island biogeography theory (MacArthur and
Wilson 1963; Wilson and MacArthur 1967), Poisson mea-
sures drive the evolution of master equations as used in
the study of abundance and richness distributions (Marquet
et al. 2020) so they represent a natural way to intro-
duce stochasticity due to dispersal in spatially structured
environments.

Islands are recognized as model systems for the study
of ecological and evolutionary processes (e.g., Warren
et al. 2015), and have inspired the development of one of
the earliest and most influential stochastic model which
underlies the theory of island biogeography (MacArthur and
Wilson 1963; Wilson and MacArthur 1967). The generality
of this model allowed for its application to spatially
heterogeneous systems of interacting entities (e.g., genes
individuals, species) connected by dispersal, such as in
metapopulation and metacommunity models (Levins 1969;
Hanski 1982; Hubbell 2001). MacArthur and Wilson’s
stochastic model for the number of species found on a
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focal island corresponds to a birth-death process whose time
evolution follows the master equation:

dPs(t)

dt
= Ps−1(t)λs−1+Ps+1(t)μs+1−Ps(t)[λs+μs], (1)

for s = 0, 1, ..., S, where Ps is the probability of observing
s species in a focal island, S is the pool of species, λs is the
birth (i.e., colonization) rate associated with the transition
from s to s + 1 species and μs is the death (i.e., extinction)
rate associated with the transition between s to s−1 species.

Birth-death processes, such as (1), are continuous-time
stochastic processes of low frequency; that is, events occur
through jumps. From a trajectorial perspective, it can
be shown that birth-death processes can be written as
driven by Poisson measures. For example, the trajectorial
representation of a process that follows (1), allow us to get
explicitly the flows or the time series of the species richness
process. In particular, a process S(·) that follows (1) is
trajectorially represented by Bansaye and Méléard (2015):

S(t) = S(0) +
∫ t

0

∫ ∞

0

(
1{z≤λ(S(u−))}

−1{λ(S(u−))<z≤λ(S(u−))+μ(S(u−))}
)
N(dz, du), (2)

where S(0) is the initial number of species and N(dz, du)

is a Poisson random measure of intensity dzdu.
Using this framework it becomes feasible to model meta-

communities considering stochastic dispersal among local
communities. In particular, we are interested in analyzing
to what extent the spatial structure of metacommunities,
through its effects on the flux of migrant individuals, affects
the outcome of species interaction fostering coexistence.
We tackle this question by analyzing the impact of meta-
community spatial structure on species coexistence and the
competition dispersal trade-off, one of the classical coex-
istence mechanisms in spatially structured habitats (Ama-
rasekare 2003; Amarasekare and Nisbet 2001; Calcagno
et al. 2006). Our proposal will focus on incorporating two
scales as drivers of the dynamics, a continuous scale for
the among species interaction, and a low frequency one
for dispersal among local communities. This will give rise
to a stochastic version of a general Lotka-Volterra model
with dispersal, where stochasticity will come from the low
frequency jumps driven by Poisson measures and represent-
ing biomass flows among local communities. The model is
illustrated by numerical simulations of competition between
two species. We show that coexistence can be maintained if
there is a competition colonization trade-off, however, the
magnitude and functional shape of this trade-off is affected
by the spatial structure of the metacommunity, the intensity
of the interaction among species, and by the presence of
refuges for the inferior competitor.

The paper is presented as follows: in “The model” we
pose the mathematical model and equations. In “Stability”

our main result about stability is proved, and in “Numerical
analysis” we develop a numerical example. A discussion
and some perspectives are set in “Discussion”. All proofs
are found in Appendix 1. In Appendix 2 we recall the basic
results of a two-competing Lotka-Volterra system in a local
community and in Appendix 3 we present how dispersal
affects the existence of priority effects.

Methods and results

Themodel

Consider a metacommunity containing J species and I local
communities. Let Xij (t) be the biomass of the species j

living in community i at time t ∈ R+. We assume that each
Xij (·) follows:

Xij (t) = Xij (0) +
t∫

0

fij (Xij (s))ds

+
J∑

j ′=1

λjj ′

t∫

0

Xij ′(s)Xij (s)ds

+
I∑

i′=1

εii′

t∫

0

∞∫

0

Xi′j (s−)1{z≤bj }Ni′j (dz, ds), (3)

where fij : R → R is the growth function of Xij (·), the
λjj ′ ’s are fixed parameters representing, in general terms,
the interaction among species. When λjj ′ > 0 the biomass
of species j increases in the presence of species j ′ either
because species j ′ is a mutualist or a resource (e.g., prey)
of j . On the other hand, when λjj ′ < 0 species j decreases
in biomass when j ′ is present because it competes or is
consumed by species j ′; and when λjj ′ = 0 species j

does not interact with species j ′. Intraspecific interaction
are included in the growth function fij , and thus λjj = 0.
The εii′ ’s are constants representing the mean proportion
of the Xi′j ’s moving or migrating among communities, for
each species j = 1, ..., J . When i �= i′, εii′ quantifies
the mean proportion of Xi′j migrating from community
i′ towards community i (and then 0 ≤ εii′ ≤ 1), while
εii quantifies the mean proportion of Xij emigrating from
community i towards some of the other communities in
the metacommunity (and then −1 ≤ εii ≤ 0). For
consistency, we must have | εi′i′ |≥ ∑I

i �=i′εii′ for all
i′ = 1, .., I ; that is, biomass losses can occur during
the dispersal process. The εii′’s can vary as a function
of the distance between communities, as well as their
size, as traditionally considered in the theory of island
biogeography and in metapopulation theory (Wilson and
MacArthur 1967; Hanski and Ovaskainen 2000). Finally,
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{Nij (dz, ds)}i=1,...,I
j=1,...,J is an independent and identically

distributed (iid) sequence of Poisson measures, with
intensity dzds, representing the stochastic dispersal regime
of the species among communities. The movement of
biomass will depend upon the species-dependent parameters
bj ’s, so that for every i = 1, ..., I and j = 1, ..., J ,
∞∫
0

1{z≤bj }Nij (dz, ·) = Nij ([0, bj ], ·) is a Poisson process

with instantaneous rate bj . As the second line of (3)
represents the discontinuous part of the process, the integral
of the Xij ’s with respect to the Poisson measures is defined
as in the usual Lebesgue-Stieltjes sense for right continuous
processes with left limits, taking Xij (t−) = lims↑t Xij (s).

This model describes the Lotka-Volterra type dynamics
of J interacting species living in a spatially structured
environment, such as an archipelago containing I islands
or metacommunity, under two different and interacting
dynamics: a continuous one, depicting growth, as well as
intra and interspecific interactions between species, and
a low frequency discrete one, describing the stochastic
dispersal of species within the metacommunity. The model
is general and can accommodate different scenarios, from
assuming that all species and local communities are
equal, to making the parameters characterizing the growth
functions fij (·)’s, such as carrying capacities and intrinsic
growth rates, to be dependent on local communities and
species attributes such as area, isolation, body size, and
trophic status. The stochasticity of the model is due to the
dispersal regime. Notice that, although the whole system
is stochastic, there is no biomass transfer from and to the
outside of the metacommunity. The model is general to the
extent that it can be applied to multiple types of interactions;
species can interact either through trophic or non-trophic
interactions (e.g., competition, mutualism) or not at all (i.e.,
neutral).

Well-posedness of themodel

In what follows we will show the well-posedness of this
model and study its long-term behavior under standard
assumptions. We begin by making explicit the assumptions
of the model:

(A.1) The Xij (0)’s are independent random variables with
corresponding densities ρij (·)’s, all having compact
support in R+.

(A.2) For each i = 1, .., I and j = 1, .., J , fij (·) is a
C1(R) function.

Assumption (A.1) allows us to describe a
plausible initial starting point for our system, since
the limitations associated with the area occupied by
the local community (e.g., an island) would only
allow for a bounded amount of biomass, and (A.2)
sets a typical condition of regularity.

In order to study the well-posedness of our model, we
are going to write the whole dynamics of the system via
matrices and vectors. Consider:

X =
⎛
⎜⎝

X11 · · · X1J

...
. . .

...
XI1 · · · XIJ

⎞
⎟⎠ ,

N(dz, dt) =
⎛
⎜⎝

N11(dz, dt) · · · N1J (dz, dt)
...

. . .
...

NI1(dz, dt) · · · NIJ (dz, dt)

⎞
⎟⎠ ,

X = vec(X) = (X11 X12 · · · X21 · · · XI(J−1) XIJ

)T
,

N(dz, dt) = vec(N(dz, dt)T)

= (N11(dz, dt)N21(dz, dt) · · · N12(dz, dt) · · · N(I−1)J

(dz, dt)NIJ (dz, dt))T,

F (X) = (f11(X11)f12(X12) · · · f21(X21) · · · fI (J−1)

(XI (J−1))fIJ (XIJ ))T,

�(X) = diag

⎛
⎝ J∑

j ′=1

X1j ′λ1j ′ ;
J∑

j ′=1

X1j ′λ2j ′ ; · · · ;

J∑
j ′=1

X2j ′λ1j ′ ; · · · ;
J∑

j ′=1

XIj ′λ(J−1)j ′ ;

J∑
j ′=1

XIj ′λJj ′

⎞
⎠

and

B(X, z) =
⎛
⎜⎜⎜⎜⎝

ε11X111{z≤b1} · · · ε1IXI11{z≤b1} 0 · · 0

0 · ...
... · 0
0 · · 0 εI1X1J 1{z≤bJ } · · · εIIXIJ 1{z≤bJ }

⎞
⎟⎟⎟⎟⎠ ,
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where vec(·) denotes the vectorization operator, T denotes
the matrix transposition operator and diag(a1; · · · ; an)

denotes an n × n diagonal matrix whose elements therein
are a1, ..., an, respectively.

Thus, we have that X, F(X) and N(dz, dt) are IJ × 1
vectors, and �(X) and B(X, z) are IJ × IJ matrices. The
dynamics of the system can thus be expressed as:

X(t) = X(0) +
t∫

0

F(X(s))ds +
t∫

0

�(X(s))X(s)ds

+
t∫

0

∞∫

0

B(X(s−), z)N(dz, ds) (4)

We have the following proposition.

Proposition 1 Under assumptions (A.1) and (A.2), the
system (4) (and hence (3)) has a unique local solution,
almost surely.

This proposition ensures only the existence of a unique
local solution, that is, a unique well-posed solution when
the state space of the process is limited (see proof in
Appendix 1). This is so since there are cases for which our
system can explode in a finite time. For example, consider
an archipelago composed of a single island (I = 1) and thus
with no dispersal, and inhabited by J = 2 species with a
mutualistic relationship, i.e., λ12 and λ21 are positive, and
with fj (x) = x(rj − αjx) (notice that we have removed
the subscript i since there is only one island in the system).
Then, our system is given by the equations:{

dX1(t)
dt

= X1(t)(r1 − α1X1(t) + λ12X2(t))
dX2(t)

dt
= X2(t)(r2 − α2X2(t) + λ21X1(t))

. (5)

From Mao et al. (2002) or Mao et al. (2003) we have that
if r1 = r2 = r ≥ 1, α1 = α2 = α and λ12 = λ21 = β

such that α2 < β2, with initial conditions X1(0) = X2(0) =
x0 > 0, system (5) can be reduced to the single deterministic
differential equation:

dX(t)

dt
= X(t)[r + (−α + β)X(t)],

whose solution is:

X(t) = r

−(−α + β) + r+(−α+β)x0
x0

exp {−rt} ,

which explodes at time:

t = 1

r
(ln(r + [−α + β]x0) − ln([−α + β]x0)) .

To avoid that (5) explodes at a finite time, it is required that
λ12λ21 < α1α2.

In our context, however, the system should not explode
since biomass has an upper bound given by the finite

area of the local communities or islands. Therefore, we
must consider additional conditions in order to state a
more appropriate well-posedness result for our model. First,
consider that F(X) in (4) can be written as F(X) =
F̃ (X)X, where F̃ (X) is a IJ × IJ diagonal matrix. Define
�(X) = F̃ (X) + �(X). Our system (4) can be now written
as:

X(t) = X(0) +
t∫

0

�(X(s))X(s)ds

+
t∫

0

∞∫

0

B(X(s−), z)N(dz, ds). (6)

Note that �(X) = diag(η1(X), ..., ηI (X)), where each
ηi(X) is a J × J diagonal matrix. Finally, assume the
following:

(A.3) There exists some n ≥ 0 such that the diagonal
matrix maxi=1,..,I ηi(X) is negative-definite if ‖
X ‖> n.

If there were no dispersal (that is, if the dynamics of the
species were only due to growth and competition processes),
this last assumption makes it clear that the biomass of
the species cannot escape a certain boundary. Then, the
following proposition shows us that this property is also true
when considering our stochastic dispersal component.

Proposition 2 Under assumptions (A.1), (A.2) and (A.3),
the system (6) has a unique solution such that:

sup
t∈R+

max
i=1,..,I ;j=1,..,J

Xij (t) < ∞, (7)

almost surely.

Also, if we assume that | εii |< 1 and εii′ > 0, with i �=
i′, if Xij (0) > 0 for some i = 1, ..., I and j = 1, ..., J , then
Xij (t) > 0 for any finite t > 0. See proof in Appendix 1.

Remark The last part of the above proposition tells us that if
the εii′’s do not take values on the boundary of their range,
species extinction can only occur in the long term, the same
characteristic shared by the classic (non-stochastic) general
Lotka-Volterra model (see Hofbauer and Sigmund 1998).
Notice that the initial condition can be Xij (0) = 0, and for
some t > 0, Xij (t) > 0 due to dispersal. The essential issue
here is that once the dynamics of Xij (·) starts (i.e., with
positive biomass), then the process can subsequently reach
0 only in the limit t → ∞, unless εii = −1 and εii′ = 0
for all i′ �= i. That is, it is possible to obtain extinction in
finite time by manipulating the parameters εii′’s in values
on the boundary of their range. For example, consider the
simple case of a single species (say, species 1) living in
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an isolated island (say, island 1) with no interactions with
others species and emigration only. Then, if the initial
condition is X11(0) = x0 > 0, its dynamics can be
described as:

X11(t) = x0 +
∫ t

0
f11(X11(s))ds

+ε11

∫ t

0

∫ ∞

0
X11(s−)1{z≤b1}N11(dz, ds).

Notice that
∫∞

0 1{z≤b1}N11(dz, ·) is a Poisson process
with instantaneous rate b1. If ε11 = −1, then extinction
occurs at τ11 = inf{t > 0 : ∫∞

0 1{z≤b1}N11(dz, t) >

0}, i. e., at the time of the first jump of N11. We can
also notice that this sudden extinction does not occur in
its “analogous deterministic case”, i. e., when the Poisson
process is replaced by its rate:

x11(t) = x0 +
∫ t

0
f11(x11(s))ds + ε11b1

∫ t

0
x11(s)ds

= x0 +
∫ t

0
f11(x11(s))ds − b1

∫ t

0
x11(s)ds,

which is a continuous dynamics, and therefore, cannot
suddenly reach zero. However, such extreme situations will
not be considered in this work.

Numerical analysis

Consider fij (x) = rj (1 − x/Kij )x in (3), where rj
is the intrinsic growth rate of species j and Kij is the
carrying capacity of species j in a local community or
island i. Here, the term −rj /Kij describes the effect
of intraspecific competition on the growth of species. In
the whole system (6), the elements of the diagonal of
�(X) are given by diag(ηi(X)) = (r1[1 − Xi1/Ki1] +∑

j ′ �=1 λ1j ′Xij ′ , ..., rJ [1 − XiJ /KiJ ] + ∑
j ′ �=J λJj ′Xij ′),

i = 1, ..., I . This example constitutes a generalized Lotka-
Volterra system, where intrinsic growth is logistic, dispersal
is presented as a stochastic regime, and which under (A.1)-
(A.3) the whole biomass does not escape from a limited
state space.

To understand the impact of the competition/colonization
trade-off on species coexistence, as well as the impact of
the spatial structure of the metacommunity on this trade-off,
we consider a specific case with J = 2 competing species
within a metacommunity containing I local communities:

Xij (t) = Xij (0) +
t∫

0

rj

(
1 − Xij (s)

Kij

)
Xij (s)ds

+
2∑

j ′=1

λjj ′

t∫

0

Xij ′(s)Xij (s)ds

+
I∑

i′=1

εii′

t∫

0

∞∫

0

Xi′j (s−)1{z≤bj }Ni′j (dz, ds), (8)

for i = 1, ..., I , j = 1, 2, and where λ12, λ21 < 0 and
λjj = 0.

In particular, we are interested in the scenario where
one species is competitively dominant and the other is
competitive inferior, such that in a closed system without
dispersal, the dominant species will always exclude the
inferior one. For an isolated community this condition
can be expressed by the following relationships among
parameter values p1 > r2/r1 and p2 < r1/r2, where
p1 = −λ21K1/r1 and p2 = −λ12K2/r2 (notice that we
remove the subscript i in the carrying capacity since this
condition is valid for an isolated local community.

In Appendix 2, we recall the basic results of a two-
competing Lotka-Volterra system in a local community or a
single island without dispersal.

In the following, we are going to show some cases
in which dispersal causes changes in the phase plane
(see Fig. 8 in Appendix 2) when we consider the
dynamics given in (8). In particular, we will show a
competition/colonization trade-off phenomenon, in which
species in competition can coexist or reverse their advantage
due to dispersal. However, we will start recalling some
basic results about stability at equilibrium by considering
Lyapunov exponents.

Stability

We can notice that 0 is an equilibrium solution of our system
(6). In Proposition 2 we saw that if Xij (t) �= 0 for some
t ∈ R+, i = 1, ..., I and j = 1, ..., J , the only possible way
that Xij (·) reaches 0 again (i.e., extinction of species j in
local community i) is in the limit t → ∞. In this regard,
we can study the long-term persistence of some species
within some local communities. One of the most popular
methods to do this is through Lyapunov exponents. The aim
is to know under which conditions extinction/persistence of
some species within some communities will occur in the
long term (e.g., Chesson 2018; Benaı̈m and Schreiber 2019).

We say that a process Z(·) taking values in R
d has a

Lyapunov exponent � if:

� = lim sup
t→∞

1

t
log(‖ Z(t) ‖) < ∞, (9)

almost surely. If it exists, for a sufficiently large t we have
that:

‖ Z(t) ‖≤ ξ exp{�t}, (10)
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almost surely, for a positive random variable ξ (see
Applebaum 2009, Chapter 6, Section 6.8). Thus, as a way to
distinguish the decay velocity, we will say that 0 is almost
surely exponentially stable if � < 0.

For practical purposes, we are going to study the long-
term behavior of observables of the form g(x) = uT

IJ x,
where uIJ is an IJ × 1 vector containing 1’s and 0’s
depending on which species, over the J possible ones, and
on which local communities among the I possible ones, we
want to carry out our analysis.

Notice that our system (6) can be written as:

X(t) = X(0) +
t∫

0

[�(X(s))X(s) + b(X(s))]ds

+
t∫

0

∞∫

0

B(X(s−), z)M(dz, ds), (11)

where M(dz, ds) = N(dz, ds) − 1IJ dzds is a martingale
and b(x) = ∫∞

0 B(x, z)1IJ dz, with 1IJ the IJ ×1 vector of
1’s. Our aim here is to determine which components of X(·)
will go to zero in the long term using Lyapunov exponents.
Thus, we are interested in processes like:

〈uIJ , X(t)〉 = 〈uIJ , X(0)〉 +
t∫

0

〈uIJ , �(X(s))X(s)

+b(X(s))〉ds

+
t∫

0

∞∫

0

〈uIJ , B(X(s−), z)M(dz, ds)〉, (12)

where uIJ is an IJ × 1 vector containing 1’s and 0’s and
〈·, ·〉 is the scalar product. Define the operator L〈uIJ , x〉 :=
〈uIJ , �(x)x + b(x)〉. We have the following result.

Proposition 3 Under assumptions (A.1), (A.2) and (A.3),
the process (12) has a Lyapunov exponent � < ∞. If
additionally, there exists a constant c > 0 such that
L〈uIJ , x〉 ≤ −c〈uIJ , x〉, for all x ∈ R, then � < 0.

The proof of this proposition is provided in Appendix 1.

Remark Actually the condition to obtain a negative
Lyapunov exponent can be replaced by L〈uIJ , X(t)〉 ≤
−c〈uIJ , X(t)〉 almost surely, for a sufficiently large t .

However, the previous result is actually stronger, in the
sense that there is an equivalence between extinction and the
negativeness of �, as stated in the following lemma.

Lemma 4 Under assumptions (A.1), (A.2) and (A.3),
extinction holds whenever � < 0.

The proof of this Lemma is provided in Appendix 1.
Finally notice that, as a consequence of the boundedness

of (6) (Proposition 2) and Lemma 4, we have that the case
of non-extinction implies that the corresponding Lyapunov
exponent results equal to zero.

Coexistence and the competition/colonization
trade-off

To assess the existence and impact of the competi-
tion/colonization trade-off we first test the stability of the
two species scenario, where species 1 is competitively dom-
inant and species 2 is the inferior competitor, as a function
of the dispersal rate of the inferior competitor (b2). That is,
we will consider a point where the classical Lotka-Volterra
model for two species (without dispersal) has a unique
stable equilibrium point, where one of the species go extinct.

Regarding the spatial structure, we will work first with
one focal community and one refuge for the inferior
competitor, defined as a local community where the
dominant species cannot exist. To isolate the effect of
dispersal with respect to the other parameters of the system,
we will consider that species only differ in their competitive
and dispersal abilities, but are otherwise identical, that is:

r1 = r2 = 1, Ki1 = Ki2 = 1 ( for all i = 1, 2),

The connectivity is given by the following choice of
parameters

ε =
(

0.0 0.1
0.0 −0.1

)
,

that is, dispersal only occur from community 2 to
community 1, and on average the proportion of the biomass
exchanged correspond to 0.1. A scheme of this simple
architecture is presented in Fig. 1 (top).

The initial conditions for our simulations are

X11(0) = 0.5, X12(0) = 0, X21(0) = 0.5,

X22(0) = 0.5.

In this scenario we assumed that the dominant competitor
does not migrate, that is b1 = 0 and analyze the long-term
behavior of the dynamics for different values of b2, from
0.5 to 11 with incremental step 0.5. For each combination
of parameters we performed 100 simulations and report the
average biomass of species 2 on the local community where
both species can potentially be found, we call this the focal
community. The results of the model are shown in Fig. 2.
One can see that the mean biomass of species 2 on the
focal community increases as b2 or dispersal from the refuge
increases. The fraction of the carrying capacity of species 2
in the focal community reaches a maximum of about 0.8 at a
dispersal rate b2 between 4 and 5. However, as b2 continues
to increase, the mean biomass of species 2 decreases again.
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Fig. 1 Architectures used in
simulations. (Top) A
two-species two communities
architecture with a single refuge
for the inferior competitor,
species 2. Results related to this
architecture are presented in
“Coexistence and the
competition/colonization
trade-off”. (Bottom) A general
random metacommunity
architecture of two-species
n-communities with a refuge for
the inferior competitor species
2. The positions of local
communities are generated
randomly using a uniform
distribution over the square
[−1, 1] × [−1, 1] except for the
refuge of the inferior species,
which is fixed at the origin
(0, 0). Results related to this
architecture are presented in
“Effect of the metacommunity
spatial structure”. Notice that we
made dispersal between
communities (ε) inversely
proportional to the distance d

between them

The same effect is observed if we increase the competitive
advantage of the superior competitor (Fig. 2), where we
have repeated the numerical experiment for p1 = 2.5
(i.e., λ21 = −2.5 and all other parameters stayed the
same). We can observe a similar shape of the function, but
much smaller absolute values (bottom). We conjecture that
the concavity associated with the impact of dispersal on
fostering coexistence is related to the relative differences
between the dispersal/recovery time scales, implying that
biomass is leaving the community faster than it is being
replenished through growth.

In Fig. 3, we show the result of competition when
the superior species (i.e., species 1) can only live in one
community (community 1), and it cannot migrate; then,
coexistence in community 1 is possible when species 2 can
live in both communities and can migrate between them
(Fig. 3, middle panels). Finally, when the dispersal rate of
species 2 is much larger (Fig. 3, bottom panel) species 2 will
go extinct from both communities because the time scale of
dispersal is faster than that of recovery as discussed above.
In Fig. 4 we can visualize the final outcome of the dynamics
of both species in community 1 through the slope (in the

long term) of the graph log(Xij (t)) vs t , which corresponds
to the (estimated) Lyapunov exponent.

Remark If we incorporate an Allee effect (e.g., Courchamp
et al. 2008) to the model of interspecific interaction, we
can observe more clearly the differences between the long-
term behavior of the empirical mean of the trajectories
and the trajectories themselves. Consider the following
modification of the system (8):

Xij (t) = Xij (0)+
t∫

0

rj

(
1− Xij (s)

Kij

) (
Xij (s)−a

)
Xij (s)ds

+
2∑

j ′=1

λjj ′

t∫

0

Xij ′(s)Xij (s)ds

+
I∑

i′=1

εii′

t∫

0

∞∫

0

Xi′j (s−)1{z≤bj }Ni′j (dz, ds), (13)

with a the critical population density, or Allee threshold,
below which the population growth rate becomes negative.
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Fig. 2 Here we show how the proportional biomass of species 2 in the
focal community changes when competing with species 1, the superior
competitor according to the classical Lotka-Volterra model (without
dispersal). We present a boxplot summarizing results from 100 simula-
tions of the model, for a metacommunity with two local communities
where the dispersal parameter of the subordinate species (i.e., species
2) varies. We considered the common parameters r1 = r2 = 1,

Ki1 = Ki2 = 1 (for i = 1 and i = 2). Connectivity parameters
are given by ε11 = ε21 equals 0 and ε12 = −ε22 = 0.1. The upper
panel corresponds to λ12 = −0.75 and λ21 = −1.25, and the bottom
panel corresponds to λ12 = −0.75 and λ21 = −2.5. In both cases we
see an increase of the final biomass species 2 in the focal community,
followed by a sudden decrease converging to 0 as b2 further increases

For simplicity, we consider the same Allee threshold
(a=0.5%) for both species. Let Xk

ij be the kth simulated
trajectory for species Xij of a pool of N total simulations
performed. We denote the empirical mean of the trajectories
of species i on island j by X̄ij = 1

N

∑N
k=1 Xk

ij . The time

τ , is the time at which the population biomass Xk
11 becomes

smaller that the critical value a, and since the dynamics
of X11 becomes strictly negative, an asymptotic extinction
event occurs. The same conclusion holds true for X22. For
N = 1000 simulations performed, we calculate the first
time when X11 (X22) becomes smaller than a/2 and called
that instant extinction time τ1 (τ2). The empirical mean and
three trajectories are presented in Fig. 5 and the distribution
of extinction times in Fig. 6. Approximately 30% (70%) of
species 1 (species 2) trajectories do not go extinct up to the
end of simulations (t = 600).

Effect of themetacommunity spatial structure

Finally, we assess the impact of the spatial structure, which
affects which communities are connected and how intense
that connection is depending on the distance between them,
and of the number of communities in the metacommunity,
on the competition/colonization trade-off under the scenario

of two species and n-communities, and where species 1 is
dominant over species 2.

Regarding the spatial structure, we will work with
different numbers of communities in a metacommunity,
and also different number of refuges for the inferior
competitor. To isolate the effect of spatial structure on the
competition/colonization trade-off, over other parameters of
the system, we will assume that species only differ in their
dispersal and competitive abilities (i.e., λ21 = −1.25 and
λ12 = −0.75) but are otherwise identical, thus r1 = r2 =
1, Ki1 = Ki2 = 1 (for all i).

First, to construct the connectivity matrix we fix a refuge
community for the inferior species at coordinates (0, 0), and
select randomly I −1 pairs (xi, yi) as locations for the other
local communities in the metacommunity. We use a uniform
U((−1, 1) × (−1, 1)) distribution for the selection. Next,
we calculate the euclidean distance dii′ between any pair of
local communities i and i′ and make

εii′ =

⎧⎪⎪⎨
⎪⎪⎩

−0.1 if i = i′,
0 if i = 1, i′ ≥ 2,

0.1 × exp(−dii′ )∑
i′ �=i exp(−dii′ )

otherwise.

The first condition implies that at each dispersal event, 10%
of the species biomass leaves the local community of origin.
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Fig. 3 Here we show the
biomass dynamics of two
species in two local
communities and where species
1 is the superior competitor,
according to the classical
Lotka-Volterra model without
dispersal. The three panels
represents three cases of the
dynamics of the two species in
the two communities, where the
dominant competitor (species 1)
is restricted to community 1 and
the inferior competitor (species
2) migrates at different rates b

between local communities
according to: (top) b2 = 0.1;
(center) b2 = 4.5, and (bottom)
b2 = 10. We considered the
common parameters r1 = 1,
r2 = 1, Ki1 = 1, Ki2 = 1, for
all i = 1, 2. Connectivity
parameters are given by
ε11 = ε21 = 0 and
ε12 = −ε22 = 0.1. Also,
λ12 = −0.75 and λ21 = −1.25
in (8) for all three cases
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The second condition, that only the inferior competitor can
inhabit the refuge community, while the third condition
implies that the fraction of biomass dispersal between
any two communities (not including the refuge) decreases
with the distance between communities, hence most of the
migrating biomass goes to close neighboring communities
(see Fig. 1).

For the dispersal parameters, we take b1 = 1 and vary
b2 from 0.5 to 11 with incremental step 0.5. We then study
the competition/colonization trade-off of Fig. 2 as a function
of the number of communities in the archipelago. For each
number of communities I , we perform 100 simulations with
randomly selected spatial configurations as we discussed
previously. For each simulation, we calculate the average
biomass of the inferior species over the communities
excluding the refuge and for I = 3, 10 and I = 20. Here
we observe that the total biomass of the inferior species
decreases with I (Fig. 7). We finally studied the shape of the
competition/colonization trade-off with I fixed but varying
the number of refuges for the inferior competitor species.

As expected, we see that the biomass of the inferior species
increases with the number of refuges.

Finally, in Appendix 3 we analyze the impact of the
competition/colonization trade-off on the priority effects
which corresponds to a scenario in model (8), in which
the species that begins with higher initial biomass is
the one that finally persists. There, we further study the
effect of dispersal on persistence, showing that it can
promote coexistence and a reversal of the initial advantage,
depending on the intensity of dispersal, further emphasizing
the importance of the competition/colonization trade-off
and the complexity of species coexistence.

Discussion

The role of dispersal in fostering coexistence in meta-
communities, and in particular the competition/colonization
trade-off, has been widely reported. The processes and
mechanisms that affect its intensity, however, are less well
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Fig. 4 The convergence of
Lyapunov exponents of species
1 and species 2 in community 1
for the corresponding cases of
Fig. 3, from top to bottom. In
solid line is depicted one typical
trajectory and in dashed line we
have a mean of 100 trajectories,
where we can see a smoothed
version of log(Xij (t)) vs t . The
slopes of the long-term
tendencies tell us the long-term
fate of species; slope ≈ 0 will
mean persistence and negative
slope indicates extinction.
Parameters are the same as used
in Fig. 3
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known. In this contribution, we have shown that the species
colonization trade-off is an important coexistence mecha-
nism, that this effect is a concave function of the dispersal
rate, and that it varies in magnitude as a function of the
topology or spatial arrangement of local communities, and
the number of refuges for the inferior competitor and that
it can reverse priority effects fostering coexistence even
when no competitive hierarchy exists. Modern coexistence
theory emphasizes at its core, that coexistence is possible
whenever fitness differences are smaller than niche differ-
ences (Chesson 2018), our results highlight the importance
of additional mechanisms related to the topology of the sys-
tem of communities as well as its relationship with dispersal
in affecting coexistence (see also Schreiber and Killingback
2013).

Under the competition/colonization trade-off it is clear
that coexistence in a local community will be most effective
if local habitat patches are continually disturbed, otherwise,
the superior competitor could slowly reach everywhere
excluding the inferior competitor. This has been shown
by the experimental addition of an increasing number of

seeds of different species in the pool to an experimental
plot, which usually results in an increase in the relative
abundance of large-seeded species, which is in agreement
with the idea that large-seeded species are poor dispersers
but strong competitors (Turnbull et al. 1999). At the
level of metacommunities, the continuous disturbance or
removal of local communities seems unrealistic, at least
for macroorganisms, this is why we included a refuge for
the inferior competitor or a local community where the
superior competitor is unable to arrive. This could reflect a
local community that it is not reachable because of distance
(e.g., dispersal limitation) or because it has a particular
combination of characteristics that render it unsuitable for
the superior competitor. This spatial niche segregation is
known to foster coexistence and could reflect a trade-
off between dispersal ability and ecological specialization
Jocque et al. (2010) as well as the effects of dispersal
or recruitment limitation (Hubbell 2005). In this regard,
our results concur with the observation that the regional
dimension of species interactions could promote the local
coexistence of competing species as a consequence of



Theor Ecol

Fig. 5 Expected value for the
proportional biomass (top) and
three different trajectories of the
corresponding cases of Fig. 3
with Allee effect. We show
trajectories up to time 200 only

patch heterogeneity at a regional scale (e.g., Levin 1974;
Amarasekare and Nisbet 2001).

It is interesting that the nature of the competition/coloniza-
tion trade-off is such that the higher the dispersal the more
difficult it becomes to replace the lost biomass with local
growth, which is diluted as the number of local communities
increases, such that the species becomes increasingly rare in
abundance an effect that is counterbalanced by an increase
in the number of refuges (Figs. 2 and 7). The fact that
intermediate dispersal fosters coexistence and thus diver-
sity agrees with other evidence (e.g., Cadotte 2006; Venail

et al. 2008). In particular, Venail et al. (2008) experimen-
tally show that intermediate dispersal maximizes diversity
and productivity, as selection at intermediate rates of dis-
persal leads to niche differentiation as well as to a better
coverage of the heterogeneity of the environment. In an evo-
lutionary context, this in turn could lead to the expression
of a dispersal-specialization trade-off, and to priority effects
if the first species arriving at a patch is able to adapt to the
local conditions (De Meester et al. 2016).

Priority effects arise when the presence or absence of
different species in a local community depends on the order
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Fig. 6 Distributions of extinction times for species 1 in community 1 and species 2 in community 2 for the corresponding system with Allee effect
in Fig. 5

in which they arrive and establish, and their initial density.
In ecological terms, this regime is what it is expected
under Lotka-Volterra competition with both species with
competitive coefficients α larger than 1, such that the result
of competition depends on initial conditions. In this regime
it has been shown that dispersal fosters coexistence along
a limited range of dispersal intensities, and that diversity
decreases as dispersal further increases, disappearing the
priority effect. Mohd et al. (2016) shows using a spatially
extended Lotka-Volterra competition model with a diffusion
term, that the disappearance of priority effects is associated
with a saddle node bifurcation. We show a similar result

whereby dispersal can reverse the priority effect or foster
coexistence under a limited range of dispersal rates.

Stochasticity in dispersal have been previously con-
sidered from different perspectives in modeling: from a
macro-scale, at the level of species, where colonization
and extinction follow a birth-death processes (see, e.g.,
MacArthur and Wilson 1963; Wilson and MacArthur 1967;
Hanski and Ovaskainen 2000); and from gene frequency
(“micro-scale”, see Nagylaki 1979), where genes migrate
at random and stochasticity is considered within the dis-
persal rates themselves at each time step. In this sense,
our model situates dispersal from an “intermediary” scale.

Fig. 7 Effects of the number of
local communities I and refuges
on the coexistence of species in
a metacommunity. (Upper panel)
Impact of the number of local
communities on the strength of
the competition/colonization
trade-off. In blue I = 3, in red
I = 10 and in yellow I = 20. In
all cases the number of refuges
is 1. (Bottom panel)
competition/colonization
trade-off as a function of the
number of refuges for a fixed
number of local communities
I = 10: in blue 10% of the
communities correspond to
refuges, in red 20%, in yellow
30%, and in violet 40%. In
green, the case without refuges.
Parameters used are described in
the main text
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Species biomass is the unit considered here, and the stochas-
tic dispersal regime refers to “biomass flows” at stochastic
random jumps, according to a Poisson regime, similar to the
birth-death processes as represented by (2).

One of the important characteristics of our model resides
in its generality. This is manifested in the fact that it
can be used to analyze entire networks of interspecific
interactions from food webs (e.g., Holt 1996; Holt et al.
2005; Holt 2009) to metafoodwebs and metaecosystems
(Gravel et al. 2016; Brechtel et al. 2019) that are usually
modeled using deterministic approaches to the inclusion
of higher-order interactions, which are known to affect
coexistence (e.g., Saavedra et al. 2017; Singh and Baruah
2020). Further, our model can be applied to the wider
class of models that address collective behavior, which can
be found in diverse areas such as decision-making (see
Seeley et al. 2012) or epidemiological models (see Murray
2007). In fact, it belongs to the broad category of models
that incorporate discontinuous dynamical processes. The
notation we use in (3) resembles those used by Nicolas
Fournier and Eva Löcherbach (see De Masi et al. 2015;
Fournier and Löcherbach 2016), where they propose a
microscopic model for a system of interacting neurons with
linear dynamics and action potentials that are modeled as
jumps directed by Poisson measures. On that system, the
hydrodynamic limit and its properties are studied. A similar
situation is found in the structured age model of interacting
neurons proposed by Pakdaman, Perthame and Salort (see
Pakdaman et al. 2009, 2013; Quininao and Touboul 2015)
where again the hydrodynamic limits are deduced from the
microscopic point of view. It is important to highlight that in
all these studies, the analysis is made in the context of large
particle systems, and therefore the description in terms of
the mean-field limits is possible (see, e.g., Ha and Liu 2009;
Haskovec 2013). In our case, we have focused the analysis
on those situations where the presence of a discontinuous
jumps process impact on the stability of steady points
for deterministic dynamics as the example presented for
a competitive Lotka-Volterra system. We acknowledge
that our results should resemble those observed under a
deterministic framework since the deterministic formulation
corresponds to the expected dynamics (see Fig. 5 upper
panel), but the stochastic approach is much richer, as many
trajectories can go to extinction even is the long-term
expected behavior is coexistence and the opposite is also
true. This can be clearly seen if we introduce an Allee
effect (Fig. 5), giving rise to a right-skewed distribution
of extinction times (Fig. 6). The existence of stochasticity
implies that, in practice, it is difficult, if not impossible, to
discern the strength and the competitive abilities of species
from observing a time series of pairs of interacting species
(see also Freilich et al. 2020), as different results can be

observed even if the most likely is compatible with the
deterministic dynamics.

One of the novel aspects of our stochastic model
of metacommunities is associated with our use of a
stochastic dispersal that follows a jump Poisson process.
There are, however, several ways to introduce dispersal
stochasticity in models of interacting species. Recently,
for example, Hening et al. (2018) developed a stochastic
population model in spatially heterogeneous environments,
where the flow evolves in a patchy habitat according to
a drift term associated with a density-dependent intrinsic
growth function, dispersal, and a diffusive Brownian term.
Including stochasticity via a component that affects in
the same scale of the continuous growth, as made in
Hening et al. (2018) (see also Mao et al. 2002; Mao
et al. 2003; Cattiaux and Méléard 2010), is quite common,
and in our case it would be equivalent to introduce
additionally in (4) a stochastic continuous diffusion term
of the form

∫ t

0 σ(X(s))dW (s) where for all x ∈ R
IJ ,

σ(x) is a IJ × r positive semi-definite matrix and W (·)
is a r × 1 Brownian motion, for some r ≥ 1 (see also
the recent work by Rebolledo et al. (2019) in which,
under the context of stochastic open network models
in ecology, dynamic biomass flows are stochastically
affected by the environment by means of high and low
noise frequencies, described through Brownian and Poisson
noises respectively). Under this scenario, it can be shown
that our results can remain unchanged (except probably
for the boundedness result of Proposition 2) when the
matrix function a(·, ·) defined by a(x, y) = σ(x)σ (y)T

for all x, y ∈ R
IJ , is, e.g., bi-Lipschitz continuous

(see Applebaum 2009, Section 6.2). Nevertheless, such a
boundedness is a mathematically technical subtlety since
the resulting diffusive process will be almost sure finite
within each finite time horizon, and the probability that the
biomass escapes from a “large compact” is actually small.
If we want to avoid this mathematical inconvenient when
considering a continuum noise term, we might set “borders
in the diffusion”, which would keep the boundedness
property (see, e.g., Skorokhod 1961, 1962; Lions and
Sznitman 1984; Tanaka 2002). However, we leave this issue
for future work.

In summary, our framework allows for a simple
way of including stochasticity in generalized models
of species interactions, with the capability of analyzing
simultaneously different kinds of interactions including
whole food webs in spatially structured environments (e.g.,
Pillai et al. 2011; Plitzko and Drossel 2015; Barter and
Gross 2017) and include, at the same time, dynamics at
two scales; a continuous one representing the scale of
species demography and interactions and a low frequency
one representing stochastic dispersal. Our model has the
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potential to be extended to analyze other relevant processes
at the level of metacommunities such as climate change,
which can greatly affect the species persistence (see, e.g.,
Zhou and Kot 2011; Tejo et al. 2017), as well as habitat
degradation, destruction, and restoration in a stochastic
framework. It is general enough to be able to deal with
the complexity of multi-species interactions in stochastic
environments.
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Appendix 1. Proofs

Proof of Proposition 1

Let ‖ · ‖ be the usual Euclidean norm in R
d , and for real

matrices Q = (qlk)l,k=1,..,d define the norm ‖ · ‖max as
‖ Q ‖max= max

1≤l,k≤d
| qlk |. Notice that for an R

d -vector Y ,

we have ‖ QY ‖≤ √
d ‖ Q ‖max‖ Y ‖. Let x ∈ R

IJ . Then,
we have the following inequalities: ‖ �(x)x ‖≤ √

IJ ‖
�(x) ‖max‖ x ‖ and ‖ B(x, z) ‖=‖ vec(B(x, z)) ‖≤√

IJ ‖ B(x, z) ‖max≤
√

IJ ‖ β(z) ‖max‖ x ‖, where

β(z)=

⎛
⎜⎜⎜⎜⎝

ε111{z≤b1} · · · ε1I 1{z≤b1} 0 · · 0

0 · ...
... · 0
0 · · 0 εI11{z≤bJ } · · · εII 1{z≤bJ }

⎞
⎟⎟⎟⎟⎠ .

(14)

Using those inequalities, we have that:

D(x) =‖ F(x) ‖2 + ‖ �(x)x ‖2 +
∞∫

0

‖ B(x, z) ‖2 dz

≤ ‖ F(x) ‖2 +IJ ‖ �(x) ‖2
max‖ x ‖2

+IJ

∞∫

0

‖ β(z) ‖2
max dz ‖ x ‖2

≤ K(x)(1+ ‖ x ‖2),

where K(x) = max{‖ F(x) ‖2, IJ ‖ �(x) ‖2
max, IJ

∫∞
0 ‖

β(z) ‖2
max dz}. By (A.1), ‖ X(0) ‖ is bounded, so we can

choose a large K0 � K(X(0)) such that D(x) ≤ K0(1+ ‖
x ‖2), for all x belonging to the set {x ∈ R

IJ : K(x) ≤
K0}. This means that (4) has a local linear growth.

On the other hand, by (A.2) F(·) is a locally Lipschitz
function. Let L(x) = �(x)x, for all x ∈ R

IJ . Now, note
that for any x, y ∈ R

IJ we have that L(x) − L(y) =
[�(x) + �(y)][x − y]/2 + [�(x) − �(y)][x + y]/2, and
then, ‖ L(x) − L(y) ‖≤ (

√
IJ/2) ‖ �(x) + �(y) ‖max‖

x − y ‖ +(
√

IJ/2) ‖ �(x) − �(y) ‖max‖ x + y ‖, where

‖ �(x) − �(y) ‖max = max
i,j

|
J∑

j ′=1

(xij ′ − yij ′)λjj ′ |

≤
I∑

i′=1

J∑
j ′=1

| xij ′ − yij ′ || λjj ′ |

≤‖ x − y ‖

√√√√√I

J∑
j ′=1

| λjj ′ |2,

by Hölder inequality. That is,

‖ L(x)−L(y) ‖≤
√

IJ

2

⎛
⎜⎝‖ �(x) + �(y) ‖max

+ ‖ x+y ‖

√√√√√I

J∑
j ′=1

| λjj ′ |2
⎞
⎟⎠ ‖ x−y ‖,

and thus for any x, y ∈ R
IJ such that ‖ x ‖ ∨ ‖ y ‖≤ M ,

where M is a constant such that M �‖ X(0) ‖, there exists
a constant HM such that ‖ L(x) − L(y) ‖≤ HM ‖ x − y ‖.
So, it means that L(·) is locally Lipschitz as well. Therefore,
conditions of Theorem 9.1 in Chapter IV from Ikeda and
Watanabe (2014) (linear growth and Lipschitz conditions)
are locally satisfied, and hence, we have existence and
uniqueness of a local solution. �
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Proof of Proposition 2

Recalling the formulation Xij (t) of (3), we define the
following quantity:

Yj (t) :=
I∑

i=1

Xij (t), (15)

which models the total biomass of species j over the
whole system (i.e., archipelago) at time t . We recall that no
biomass is transferred from outside the archipelago and all
the emigrant biomass of any species in any community at
most lands over some of the other communities. Therefore,
the stochastic part of (3) must satisfy:

I∑
i=1

I∑
i′=1

εii′
∫ t

0
Xi′j (s−)

∫ ∞

0
1{z≤bj }Ni′j (dz, ds)

=
I∑

i′=1

(
I∑

i=1

εii′

)∫ t

0
Xi′j (s−)

∫ ∞

0
1{z≤bj }Ni′j (dz, ds)≤0,

(16)

almost surely, since
∑I

i=1 εii′ ≤ 0 for any i′. Let Y =
(Y1, ..., YJ )T. Now, in (6), let � be the J × IJ matrix such
that �X = Y . We have that:

Y (t) ≤ Y (0) +
t∫

0

��(X(s))X(s)ds,

by (16). Then we get:

Y (t) ≤ Y (0) +
t∫

0

��(X(s))X(s)ds ≤ Y (0)

+
t∫

0

max
i=1,..,I

ηi(X(s))�X(s)ds

= Y (0) +
t∫

0

max
i=1,..,I

ηi(X(s))Y (s)ds.

By (A.3), it is clear that supt∈R+ maxj=1,..,J Yj (t) <

∞, almost surely, and (7) follows from the fact that
maxj=1,..,J Yj (·) ≥ maxi=1,..,I ;j=1,..,J Xij (·), almost
surely.

Now, we shall prove that extinction occurs in the long
term. First, notice that under structural assumptions made
in (6), we can write in (3) fij (x) in the form f̃ij (x)x.

Therefore, for any t ∈ R+, i = 1, ..., I and j = 1, ..., J we
have:

Xij (t) ≥ Xij (0) +
∫ t

0
f̃ij (Xij (s))Xij (s)ds

+
∫ t

0

J∑
j ′ �=j

λjj ′Xij ′(s)Xij (s)ds

−
∫ t

0
Xij (s)

∫ ∞

0
1{z≤bj }Nij (dz, ds)

= Xij (0) +
∫ t

0
f̃ij (Xij (s))Xij (s)ds

+
∫ t

0

J∑
j ′ �=j

λjj ′Xij ′(s)Xij (s)ds

−
∫ t

0
Xij (s)bj ds +

∫ t

0
Xij (s)Mij ([0, bj ], ds),

where Mij ([0, bj ], t) = −(
∫∞

0 1{z≤bj }Nij (dz, t) − tbj ) =
tbj − Nij ([0, bj ], t) is a square-integrable martingale. This
implies that:

Xij (t) ≥ Xij (0) exp

⎧⎨
⎩
∫ t

0

⎡
⎣f̃ij (Xij (s))

+
J∑

j ′ �=j

λjj ′Xij ′(s) − bj

⎤
⎦ ds + Mij ([0, bj ], t)

⎫⎬
⎭

≥ Xij (0) exp

{
t inf
x∈RJ

Gij (x) + Mij ([0, bj ], t)
}

,

where

inf
x∈RJ

Gij (x) := inf
(x1,...,xJ )T∈RJ

⎡
⎣f̃ij (xj )+

J∑
j ′ �=j

λjj ′xj ′ − bj

⎤
⎦ ,

and RJ is the bounded subset of RJ+ which delimits the state
space of (Xi1(·), ..., XiJ (·))T for any i = 1, ..., I . On the
other hand, we have that:

E
(
exp

{
Mij ([0, bj ], t)

}) = exp
{
bj t exp{−1}} ,

and thus,

E(Xij (t))≥E(Xij (0)) exp

{
t ( inf

x∈RJ
Gij (x) + bj exp{−1})

}
.

(17)

Notice that it must satisfy bj exp{−1} + infx∈RJ Gij (x) ≤ 0
if Xij (0) > 0, since otherwise E(Xij (t)) → ∞ when t →
∞, which contradicts the fact that Xij (·) is bounded. So, if
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Xij (0) > 0, exp
{
t infx∈RJ Gij (x) + Mij ([0, bj ], t)

}
never

reaches zero in finite time, and then neither does Xij (·). �

Proof of proposition 3

First notice that the vector b(x) can be decomposed into
b(x) = βx, where β = ∫∞

0 β(z)dz and β(z) is the IJ × IJ

matrix defined in (14). Also, we have that ‖ B(x, z) ‖≤√
IJ ‖ β(z) ‖max‖ x ‖.
We start by showing the existence of a Lyapunov

exponent for (6). Consider its representation given by (11).
According to Theorem 6.8.2 in Applebaum (2009), we have
to show that the alternative condition to the Assumption
6.8.1, given in Equation (6.42), is satisfied for our system
(11) for all x ∈ R. That is, the existence of a positive
constant L′ such that xT�(x)x+xTb(x)+∫∞

0 ‖ B(x, z) ‖2

dz ≤ L′(1+ ‖ x ‖2). In fact, by the above, we have that:

xT�(x)x + xTb(x) +
∫ ∞

0
‖ B(x, z) ‖2 dz ≤ xT�(x)x

+xTβx + IJ ‖ x ‖2
∫ ∞

0
‖ β(z) ‖2

max dz ≤ L′′ ‖ x ‖2,

where L′′ = max{supx∈R �(x), ‖ β ‖, IJ
∫∞

0 ‖ β(z) ‖2
max

dz}. Clearly it also implies that the process (12) has a
Lyapunov exponent.

Now, consider that there exists a constant c > 0 such
that L〈uIJ , x〉 ≤ −c〈uIJ , x〉 for all x ∈ R. Define
Ex(〈uIJ , X(t)〉) := E(〈uIJ , X(t)〉 | X(0) = x), for all
t ∈ R+. Applying it to (12) we obtain:

Ex(〈uIJ , X(t)〉) = 〈uIJ , x〉 +
t∫

0

Ex(〈uIJ , �(X(s))X(s)

+b(X(s))〉)ds

≤ 〈uIJ , x〉 − c

t∫

0

Ex(〈uIJ , X(s)〉)ds.

Then, by Gronwall’s inequality we get:

Ex(〈uIJ , X(t)〉) ≤ 〈uIJ , x〉 exp{−ct},
which implies that 〈uIJ , X(·)〉 goes exponentially fast to 0.
�

Proof of Lemma 4

For a chosen uIJ , there exists i′ = 1, ..., I and j ′ =
1, ..., J such that Ex(Xi′j ′(·)) ≤ Ex(〈uIJ , X(·)〉), where
Ex(Xi′j ′(·)) satisfies (17) for i = i′ and j = j ′ given
Xi′j ′(0) = x. Therefore, extinction can only occur in an
exponentially fast way. �

Appendix 2. Some results of a classical
competitive Lotka-Volterra system

In the present appendix we recall some results of a classi-
cal competitive Lotka-Volterra system and its corresponding
parameter space, in order to enlighten the long-term solu-
tions and the reader realize how the presence of dispersal
can transform such parameter space and bifurcation dia-
grams. Notice that as we will start treating the classic case,
in a local community without dispersal, first we do not
consider the subscript i. Consider then the equations:

x′
1(t) = x1(t) (r1 + α11x1(t) + α12x2(t)) ,

x′
2(t) = x2(t) (r2 + α21x1(t) + α22x2(t)) .

For any steady state (x1, x2), the eigenvalues of the Jacobian
matrix are given by:

1

2

(
tr(J ) ±

√
tr(J )2 − 4 det(J )

)
,

where tr(J ) and det(J ) stand for the trace and determinant
of the matrix

J =
(

r1 + 2α11x1 + α12x2 α12x1

α21x2 r2 + α21x1 + 2α22x2

)
.

In the following we simply write T = tr(J ) and D =
det(J ). The standard trace-determinant analysis tells us that

• Case 4 det(J ) > tr(J )2: the system has two complex
eigenvalues, If tr(J ) < 0 then the steady state is stable.
On the other hand, if tr(J ) > 0 then the steady state is
unstable.

• Case det(J ) < 0: in this scenario, both eigenvalues are
positive and have different sign, thus the steady state is
unstable.

• Case 0 < 4 det(J ) < tr(J )2: if tr(J ) > 0 then the
two eigenvalues are positive and the steady state is
unstable. Otherwise, tr(J) < 0 then the configuration is
asymptotically stable.

Recall also that steady states are either (0, 0), (0, −r2/

α22), (−r1/α11, 0) or

x̄1 = −r1α22 + r2α12

α11α22 − α12α21
, x̄2 = −r2α11 + r1α21

α11α22 − α12α21
.

Then we have:

• (0, 0): it follows that T = r1 + r2 and D = r1r2, in
which case the extinction scenario is unconditionally
unstable.

• (0, −r2/α22): we have

T = r1 − r2
α12

α22
− r2 and D = −r2

(
r1 − r2

α12

α22

)
.

Stability of this fixed point is reduced to the condition

r1 < r2
α12

α22
.
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• (−r1/α11, 0): similarly,

T = −r1 + r2 − r1
α22

α11
and D = −r1

(
r2 − r1

α21

α11

)
,

by consequence, the stability of this fixed point holds
true if and only if

r2 < r1
α21

α11
.

• (x̄1, x̄2): it follows that

T = α11x̄1 + α22x̄2 and D = (α11α22 − α12α21
)
x̄1x̄2,

the existence and stability of this final fixed point is
only under the conditions

α11α22 > α12α21, r1α22 < r2α12 and r2α11 < r1α21.

Notice that, since αii < 0 then second and third
conditions are equivalent to

r1 > r2
α12

α22
and r2 >

r1α21

α11
,

thus we have the instability of all previous scenarios.

Analysis of the phase plane

If we come back to the numerical example with 2 species
in a local community without dispersal, the system of
equations are:

x′
1(t) = x1(t)

(
r1 − r1

K1
x1(t) + λ12x2(t)

)
,

x′
2(t) = x2(t)

(
r2 + λ21x1(t) − r1

K2
x2(t)

)
,

thus defining the interacting matrix
(−r1/K1 λ12

λ21 −r1/K2

)
.

Parameters rj ’s are intrinsic for each species, thus we can
consider them as fixed. Therefore, we can make an analysis
of the stability of the fixed points under the two nonnegative
quantities:

p1 = α21

α11
, p2 = α12

α22
,

where α21 = λ21, α12 = λ12, α11 = −r1/K1 and
α22 = −r2/K2. It follows that the coexistence of the two
population can happen only under the restriction

p1p2 < 1,
r1

r2
> p2,

r2

r1
> p1,

and similar conditions appear for any of the other fixed
points. We summarize this parameter dependence of fixed
points, in Fig. 8, where without loss of generality we have

Fig. 8 Outcomes of the model for a single community and two
populations when r1 > r2 and on the parameter space p1 =
−λ21K1/r1 v/s p2 = −λ12K2/r2. Long-term behavior on each zone:
(a) coexistence, (b) species 1 wins, (c) species 2 wins and (d) strong
competition. Points 1 and 3 are the coordinates for the analyzes carried
out in “Coexistence and the competition/colonization trade-off” and
“Effect of the metacommunity spatial structure” and Appendix 3,
respectively

assumed that r1 ≥ r2. Long-term behavior correspond to
the classical Lotka-Volterra competition: a) coexistence, b)
species 1 wins, c) species 2 wins, and d) strong competition
(where the species with the largest initial biomass wins),
that correspond to each of the zones in Fig. 8. The conditions
for each scenario are:

(a) p1 < r2/r1 and p2 < r1/r2. Since in this case p1p2 <

1, coexistence of species is expected.
(b) p1 > r2/r1 and p2 < r1/r2. It follows that species 1

kicks in and at large times it is expected to converge
asymptotically towards (−r1/α11, 0) = (K1, 0).

(c) p1 < r2/r1 and p2 > r1/r2. Species 2 dominates
and the solution is expected to converge asymptotically
towards (0, −r2/α22, 0) = (0, K2). Moreover, since
p1 < r2/r1 and p1p2 > 1 we get that

x̄1 = −r1α22 + r2α12

α11α22 − α12α21
= 1

α11

r2p2 − r1

1 − p1p2
> 0,

and

x̄2 = −r2α11 + r1α21

α11α22 − α12α21
= 1

α22

r1p1 − r2

1 − p1p2
< 0,

i.e., the second coordinate of the coexistence scenario
vanishes and

d) p1 > r2/r1 and p2 > r1/r2. In this last zone
conditions imply that both winner-takes-all scenario
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are possible, and that the coexistence fixed point
(x̄1, x̄2) exists but it is unstable. Therefore, according
to initial condition, we expect to converge at large
times towards either (0, K2) or (K1, 0).

Appendix 3. Additional results for two
species competition with priority effects

Results for the dynamics of two species in a central
community within ametacommunity architecture
with three local communities

For each pair (b1, b2) with bi taking values from 0.1 to 0.9
with incremental step 0.1, we performed 150 simulations.
We report the empirical average of biomass of both species
on the central community.

The results of the model are shown in the upper subplots
of Fig. 9. One observes that the species with larger dispersal

rates dominates the long-term solutions in the central
community. In the bottom panel of Fig. 9 we plot the
probability that species 1 wins as a function of the difference
b1 − b2. We find a shape very similar to the ones described
in literature (see, e.g., Calcagno et al. 2006).

Results for two species competition under priority
effects in ametacommunity with two local
communities

The first case is a symmetrical one, in which the outcome
is the expected one for the classical Lotka-Volterra model
(i.e., for each community, the species with the larger initial
biomass will win). In our example, species 1 wins in
community 2 due to its larger initial biomass condition
and species 2 wins in community 2 for analogous reasons
(Fig. 10 upper panel). Here, species 1 cannot disperse and
species 2 dispersal rate b2 is low. In the second scenario,
a small increase in b2 and no dispersal of species 1, will

Fig. 9 Simulations made for
parameters r1 = r2 = 2,
Ki1 = Ki2 = 10 (for all
i = 1, 2, 3). All εij are 0 except
for ε21 = ε23 = −ε11 = −ε33 =
0.1 and λ21 = λ12 = −0.21.
(top) We show the empirical
mean calculated for species 1
and 2 in a central community
under a strong competition
scenario where species with
higher initial biomass will win
according to the classical
Lotka-Volterra model of
competition without stochastic
dispersal. (down) We show the
probability that species 1 wins
as a function of the difference
between colonization rates
b1 − b2. As expected, under a
symmetric dynamics the species
with larger bi dominates at long
times. Dots represents the
empirical mean of 150
simulations of the model, for the
three-community architecture
where the dispersion parameter
of species 1 varies. The solid
line corresponds to a nonlinear
statistical fit
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reverse the competence in community 1, and species 2 will
win in both communities (Fig. 10, middle panels). And
in the third scenario, species 1 only lives in community
1, and a stronger dispersal intensity of species 2 and no
dispersal of species 1, will cause coexistence in community
1 (Fig. 10, bottom panel). This last outcome is due to
the rapid and massive exchange of biomass of species 2
from one community to another, which can maintain its
biomass levels in both communities, specifically causing

in community 1 that the biomass condition for winning
frequently changes: sometimes species 1 locally dominates
due to a temporary larger biomass and sometimes species
2 locally dominates due to the same reason. In Fig. 11
we can visualize the final outcome of the dynamics of
both species in community 1 and under each scenario,
through the slope (in the long term) of the graph log(Xij (t))

vs t , which corresponds to the (estimated) Lyapunov
exponent.

Fig. 10 Here we show the biomass dynamics of two species in two
communities under a priority effect scenario whereby the species that
wins in competition is the one with higher initial biomass. The three
panels represents three cases of the dynamics of the two species in the
two communities, where the dispersal parameter of the inferior com-
petitor species (the one with the lowest initial biomass) varies in each
of these columns. The simulations where made over a mean of 50 tra-
jectories and we considered the common parameters r1 = 1.6, r2 = 1,
Ki1 = 12, Ki2 = 10 (for all i = 1.2), ε12 = ε21 = −ε11 = −ε22 =
0.5, λ12 = −0.168 and λ21 = −0.0875 in (8) for the three cases, with

initial conditions given by X11(0) = 10, X12(0) = 1, X21(0) = 1
and X22(0) = 10. The first case is one where the dispersal rate of
species 2 is low, b2 = 0.003, and no dispersal of species 1. In the
second case we consider only a small increase in the dispersal rate
of species 2 (b2 = 0.05). Notice that this subtle change makes this
species to increase in biomass in community 1 reversing the priority
effect. Finally, in the third case, in local community 2 only species 2
exists but as we increase its dispersal rate (b2 = 1) the priority effect
coexistence in local community 1 is now possible
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Fig. 11 Convergence of
Lyapunov exponents of species
1 and species 2 in community 1
for the corresponding cases of
Fig. 10, from top to bottom. In
continuous line is depicted one
typical trajectory and in dashed
line the mean of 50 trajectories,
where we can see a softened
version of log(Xij (t)) vs t . The
slopes of the long-term
tendencies tell us the destination
of the species: slope ≈ 0 will
mean persistence and negative
slope indicates extinction
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