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Gutiérrez Abascal, 2, ES-28006, Madrid, Spain. MBA also at: Rui Nabeiro Biodiversity Chair, CIBIO, Univ. of Évora, Largo dos Colegiais,
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Viable populations of species occur in a given place if three conditions are met: the environment at the place is suitable;
the species is able to colonize it; co-occurrence is possible despite or because of interactions with other species. Studies
investigating the effects of climate change on species have mainly focused on measuring changes in climate suitability.
Complex interactions among species have rarely been explored in such studies. We extend network theory to the analysis
of complex patterns of co-occurrence among species. The framework is used to explore the robustness of networks under
climate change. With our data, we show that networks describing the geographic pattern of co-occurrence among species
display properties shared by other complex networks, namely that most species are poorly connected to other species in
the network and only a few are highly connected. In our example, species more exposed to climate change tended to be
poorly connected to other species within the network, while species more connected tended to be less exposed. Such high
connectance would make the co-occurrence networks more robust to climate change. The proposed framework illustrates
how network analysis could be used, together with co-occurrence data, to help addressing the potential consequences of
species interactions in studies of climate change and biodiversity. However, more research is needed to test for links
between co-occurrence and network interactions.

Assessments of the effects of climate change on the
distributions of species have typically been conducted using
bioclimatic modelling approaches that ignore local popula-
tion processes (but see Keith et al. 2008, Anderson et al.
2009) and biotic interactions (but see Araújo and Luoto
2007). By ignoring biotic interactions, an implicit assump-
tion is that responses of species to climate changes are
‘individualistic’ (Pearson and Dawson 2003). However,
interspecific interactions may structure biotic communities
even at coarser spatial scales (Heikkinen et al. 2007, Gotelli
et al. 2010). Thus, the ‘individualistic response’ assumption
is problematic because it fails to account for interdepen-
dencies between species, whereby the removal of species or
changes in the density of individual species within
ecosystems can have cascading effects giving raise, for
example, to secondary extinctions (for reviews see Ebenman
and Jonsson 2005, Tylianakis et al. 2008). The individua-
listic response approach may also fail by ignoring known
properties of interaction networks, such as increased
resilience of assemblages with increasing connectance
(Dunne et al. 2002b, Eklof and Ebenman 2006), and the

long-term co-occurrence of species enhanced by asymme-
trical interactions (Bascompte et al. 2006).

The question then is: how can ecological interactions be
accounted for in predictions of the effects of climate change
on species distributions? One possible approach is to
perform controlled experiments, whereby the anticipated
changes in climate are simulated and the responses of
species under different treatments are recorded. The results
of two recent studies using this approach reinforce the
notion that ecological interactions do affect species re-
sponses to climate change and can even overturn pure
climatic effects (Suttle et al. 2007, Harmon et al. 2009).
The problem is that while bioclimatic models often lack
explicit parameterization of biotic interactions (but see
Araújo and Luoto 2007, Heikkinen et al. 2007, Meier et al.
2010), experimental approaches are generally not feasible.
Here, we explore an alternative approach using matrices of
species spatial co-occurrences (the fundamental unit of
analysis in community ecology and biogeography, Gotelli
2000), derived from overlapping geographic distributions
to infer the consequences of climate change on assemblages
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of interacting species across large areas. The approach does
not seek to incorporate biotic interactions in the modelling
process. Instead, it seeks to generate inferences about the
strength of potential interactions based on patterns of co-
occurrence among species and assess the degree to which
they are likely to constrain assessments of the species
sensitivity to climate change.

One major difficulty that our approach begins to address
is that data to characterize interactions among species in
diverse communities are generally lacking and are unlikely
to become available in the near future. In order to address
this shortfall, we use an approach based on network analysis
to make inferences about potential broad-scale interactions
between species based on the analysis of patterns of
geographic overlap in the distributions of species. The
reconstructed relationships are then used to estimate broad
network properties, such as their overall robustness or
resistance to species loss, as well as properties of the
networked species, such as the species contributions to
network robustness or the species sensitivity to the loss of
links in the network (see for alternative implementations of
coexistence networks in biogeography and community
ecology: Dos Santos et al. 2008, Blick and Burns 2009,
Azaele et al. 2010, Bell et al. 2010). The relationship
between measured network properties and projected species
distributional changes is then explored. The approach is
implemented with data on the distributions of reptile,
amphibian, mammal, and bird species across most of
western Europe. These data are used for illustration of the
framework and its methods, rather than for testing
inferences about biotic interactions from patterns of co-
occurrence; future testing of the framework should seek to
use networks with tested functional properties.

Individualistic behaviour and ecological
networks

There is a general consensus among bioclimatic modellers
that species respond to climate changes individualistically
(Pearson and Dawson 2003). Reliance on this idea has
received support from analyses of the fossil record (reviewed
by Graham and Grimm 1990, Stewart 2009), particularly
from analysis of pollen cores showing that even when
species composition remains stable over time, abundances
of individual species change and non-analogue communities
may emerge (Williams et al. 2001, Simakova 2006).
Analysis of fossil mammal faunas for the Late Pleistocene
and late Holocene provide further evidence that climate
change forces individual species distributions to shift in
different directions, and at different rates, thus giving rise to
assemblages with no modern analogues (Graham et al.
1996). The ability of species to persist in non-analogue
communities is interpreted as providing evidence that
species respond individualistically to climate changes and
are able to survive in very different assemblages, playing
down the role of biotic interactions. However, the
appearance of non-analogue sets of coexisting species does
not imply that biotic interactions are unimportant to
shaping the composition of assemblages over time. What
the evidence seems to suggest is that strong symmetrical
interdependencies, which would cause species to depend on

one another to respond to environmental pressures, are not
prevalent. In fact, asymmetry seems to characterize most
interactions between pairs of species. Only competition
(�/�) and mutualism (�/�) are symmetrical. Other
types of interactions, such as amensalism (�1/0), com-
mensalism (�1/0), predation and parasitism (�1/�1) are
asymmetrical. In cases of tight co-evolution between pairs
of species, strong asymmetrical interdependencies may exist
such that, for example, one animal species A might depend
strongly on a given plant species B, whereas the plant B
might depend weakly on animal A (Bascompte et al. 2006).
When this happens, A needs to track the distribution of B,
under climate change forcing, even if B does not depend
strongly on A (see also Salomon et al. 2010). Arguably, in
most cases � particularly in areas exposed to cyclic
environmental changes, such as high-latitude regions � it
is unlikely that species would maintain such strong and
rigid interdependencies. Firstly, processes of co-evolution-
ary convergence require time (Thomson 2005), and time
implies long-term climatic stability which has been absent
from high latitudes due to the cyclical glaciations (Frakes
1979). Secondly, even if evolutionary convergence had been
possible, such species would have had a higher likelihood of
extinction and probably been removed from the system by
natural selection. Under such circumstances, a more likely
scenario might be that most species would have been able to
shift from one resource to another if conditions forced them
to do so. One example was described for Adélie penguins in
the Antarctica, where the species was able to switch in
B200 yr from a diet mainly composed of fish to one
predominantly based on krill (Emslie and Patterson 2007).

The consequence of a predominance of asymmetrical
interactions is that some species are relatively more
important in maintaining the overall structure of the
network than others. Analysis of complex networks of
interactions have indeed shown that few nodes (e.g. species)
may act as hubs of the networks, gluing them together,
whereas the majority of the nodes display weak links with
the other constituting nodes (e.g. see for reviews Proulx
et al. 2005, Bascompte 2007). This property of networks
has often been described by a power law function p(k)
a k�y, where p(k) is the probability of a node having k
links and y is the exponent. When plotted in a log�log plot,
this relationship is given by a straight line of slope �y for the
entire range of k values. Not all networks display a
frequency distribution of the number of links per node
(i.e. k or the degree distribution) that fits a power law, but it
is generally the case that many species have a limited
number of interactions (low degree), whereas few have more
interactions (high degree) than expected by chance.

In the context of the above discussion one can predict
that if most assemblages include species with asymmetrical
and/or weak links with other species, then there is little
reason to expect that the networks of interacting species
would respond to climate change as a cohort. In other
words, the fact that species often respond to climate changes
independently of other species does not imply a reduced
role for biotic interactions; it could simply mean that
because species predominantly have non-obligate links with
other species, assemblages are unlikely to behave as discrete
entities (as one might interpret from the work of Clements
1916). However, the finding that most networks display
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shared non-random properties prevents the opposing
interpretation; that is, that species responses to climate
change are driven by species individual requirements or
dispersal alone. The truth might lie between these two
extremes. Thus, rather than opposing the view of indivi-
dualistic vs assemblage responses to climate change, a more
fruitful discussion is one based on measurements of the
relative importance of interdependencies in different assem-
blages. Such dependencies can be explored using network
analysis.

The critical question then is how to measure such
interdependencies. Several studies have measured interac-
tions between pairs of species with well-known ecologies
(Nilsson 1988, Johnson and Steiner 1997), while others
have measured interactions among species in simple
communities (Colwell 1973). Only recently have research-
ers started measuring pairwise interactions for relatively
larger groups of species (Camacho et al. 2002, Dunne et al.
2002a, Milo et al. 2002, Bascompte et al. 2003, Garlaschelli
et al. 2003), but usually with a focus on a particular type of
biotic interaction (e.g. predation, dispersal, pollination).
Naturally, the sheer number and complexity of direct and
indirect interactions linking species within ecosystems is so
great that their complete documentation is beyond reach.
Making progress in understanding the role of complex
interactions as drivers of species distributional dynamics,
and their responses to climate change, requires the
investigation of alternative approaches, such as the one we
explore in this contribution.

Methods

The proposed framework involves 1) building spatial co-
occurrence networks from a species co-occurrence matrix;
2) making inferences about network robustness; 3) model-
ling the exposure of individual species to climate change;
and 4) investigating the relationship between measurements
of network robustness and species exposure to climate
change. An application of the proposed framework is
provided using geographical distributions comprising all
terrestrial vertebrates of Europe. The data are used for
illustration of the framework, rather than testing it.

Building spatial networks of co-occurrence

Spatial networks of co-occurrence were built in 4 steps. In
short, the procedure consists in measuring the number of
sites where species co-occur (step 1), generating the co-
occurrence network based on the measured distributional
overlap between species distributions (step 2), pruning the
network from spurious links using a null model of expected
distributional overlap between pairs of species (step 3), and
use a known standard (the percolation threshold) for
analyzing and comparing network properties (step 4). A
synthetic description of this procedure is provided in Table
1, where assumptions and shortcomings of each one of the
steps are summarized.

Step 1 � a pairwise Bray�Curtis distance matrix was
constructed to measure the degree of geographical co-
occurrence in the distributions of pairs of species (Bray and
Curtis 1957), but any distance metric could be used.
Distances ranged from 0 to 100, with 100 representing
completely non-overlapping distributions and 0 represent-
ing completely overlapping ones.

Step 2 � a spatial network of co-occurrence with species
treated as nodes was built with software programmed by
AR. Each link joining pairs of species was labelled with the
Bray�Curtis distance among them.

Step 3 � several connections between species may be due
to chance alone (Connor and Simberloff 1979). In order to
remove these links from the network a null model was
generated. The general principle is that overlaps that are
equal or lower from that expected by chance should be
discarded. Rather than generating the null model from a
randomized experiment (Blick and Burns 2009, Kones et al.
2009), we addressed the problem analytically. Consider a
given geographical space occupied by randomly located
non-overlapping individuals, regardless of whether they
pertain to the same species or not. Suppose we represent
this environment by a two dimensional regular lattice of size
A�N�M. Then the probability Pa of finding an
individual of species a in any randomly chosen site can be
calculated as Pa�Na/A, where Na is the number of sites
occupied by species a. In this same context one can calculate
the probability of finding individuals of species a and b
simultaneously,

Pa&b�PaPb

Table 1. Stepwise approach for building networks of interactions using large scale species distributions. A discussion of the major
assumptions and caveats with each step in the framework is provided.

Step Approach Assumptions Caveats

1 Build pair wise geographical
dissimilarity matrix

The degree of spatial overlap in species distributions
indicates degree to which species can potentially
interact.

Species may overlap but do not interact
either directly or indirectly.

2 Construct unweighted or weighted
network of interactions in
geographical space

If assumption 1 is correct, then distances can be
converted in network interactions.

The same as in 1.

3 Remove interactions that are not
more likely than expected by
chance

Pairwise interactions not greater than expected by
chance are not ecologically meaningful.

Interactions may be no greater
than expected by chance and still be
meaningful.

4 Prune network of interactions by
identifying the percolation point

At large geographical scales all species interact
directly or indirectly with one another, thus forming
a connected network.

Procedure with untested properties in
ecological systems. Needs empirical
validation.
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of finding just one species,

Pa OR b�Pa(1�Pb)�(1�Pa)Pb�Pa�Pb�2PaPb

and of finding neither species a or b in a randomly chosen
site

P�a &�b�(1�Pb)(1�Pa)�1�Pa�Pb�PaPb

Then it follows that

Pa&b�Pa OR b�P�a &�b�1

Consider now a multinomial random variable X(a,b) with
three possible states S�{(i) site contains both species a and
b, (ii) site contains one of the species a or b, (iii) site
contains neither of the species, neither a nor b}. So it is
expected to find in average B(i)��APa&b sites in state
(i), B(ii)��APa OR b sites in state (ii) and B(iii)��
AP�a & �b sites in state (iii); with a variance of Var(i)�
A Pa&b (1�Pa&b), Var(ii)�APa OR b (1-Pa OR b) and
Var(iii)�AP�a & �b (1-P�a & �b) respectively.

In order to identify links between species that are
different from that expected by chance, we retain links
between pairs of species whose number of co-ocurrences is
either above B(i)��2(Var(i))1/2 (attractive overlap) or
below B(i)��2(Var(i))1/2 (repulsive overlap).

Step 4 � once the network has been pruned from non-
significant links, further removal of links is done after
identification of the network’s percolation threshold. The
percolation threshold is a mathematical term related to
percolation theory, which is the formation of long-range
connectivity in random systems (Stauffer and Aharony
1992). The percolation threshold is the critical value of the
occupation probability, or more generally a critical surface
for a group of parameters, such that infinite connectivity
(percolation) first occurs. As such, it is a particularly useful
point at which to examine networks as it represents the
minimal set of links underlying network connectivity and
provides a standard for comparing networks of different size
and type. Below this threshold, a network is thought to lose
its integrity and collapse into small clusters. In our
application, co-occurrence among species in the network
was expected for connections representing Bray�Curtis
distance just below the percolation threshold (Rozenfeld
et al. 2008), standing for geographical overlapping above a
minimal cut-off. The precise location of this threshold is
made with a standard methodology adapted for finite

systems (Stauffer and Aharony 1992), i.e. by calculating
the average size BS�* of the clusters excluding the largest
one:

�S���
1

N

X

sBSmax

s2ns (1)

as a function of the last distance value removed
and identifying the critical distance with the one at which
BS�* has a maximum. N is the total number of nodes not
included in the largest cluster and ns is the number of
clusters containing s nodes.

Making inferences about ecological network
robustness

Starting with the working premise that co-occurrence
networks provide a surrogate for potential interactions
among species (but see summary of caveats in Table 1),
three measures of robustness can be investigated (Table 2):
species contributions to network robustness; species sensi-
tivity to the loss of network nodes (i.e. species); and overall
network robustness or network resistance to species loss.

Species contributions to network robustness
The species contributions to network robustness are often
examined as a function of species degree ki; that is, the
number of species a given species interacts with. The
assumption is that the greater the degree of a species, the
greater its contribution to network robustness. In addition
to ki, we also calculate a weighted measure of interaction
intensity (Barrat et al. 2004), known as species strength
(Bascompte et al. 2006). Species strength si is a quantitative
extension of species degree, and can be defined as the sum
of dependences dij (or co-occurrence, see below) between
pairs of species i and j

si�
XN

j�1

aijdij (2)

where aij determines whether species i and j are connected
(aij�1) or not (aij�0). The loss of a species linked with
several highly dependent species is considered to affect
network robustness more than a species with fewer links

Table 2. Measured network properties and their ecological interpretations.

Indicator Measure Definition

Pairwise sensitivity to species loss Symmetry The degree to which the dependence of species A on species B is
equal to the dependence of species B on the species A.

Network robustness to species loss Degree distribution The frequency distribution of the individual species degree for the
entire network.

Strength distribution The frequency distribution of the individual species strength (in) for
the entire network.

Species contribution to network
robustness

Species degree The number of links that connect the focal species to the other
species. Assumes symmetrical interactions.

Species strength (in) A quantitative extension of species degree accounting for asymme-
trical interactions. It provides a weighted sum of the proportion of the
geographical distribution of B1..n that overlaps with species A.

Species sensitivity to network loss Species strength (out) A quantitative extension of species degree but accounts for
asymmetrical interactions. It provides a weighted sum of the
proportion of the geographical distribution of A that overlaps with
B1..n.
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with less dependent species. In practice, measures of
strength and degree tend to be correlated (Barrat et al.
2004, Bascompte et al. 2006), but degree assumes depen-
dencies between species to be symmetrical whereas the
measure of strength incorporates the more realistic idea of
asymmetry between species dependences.

The critical issue for measuring strength is to quantify
the level of dependence between pairs of species (dij). In
networks of co-occurrence, species strength may be calcu-
lated by first quantifying the proportion of the geographical
distribution of species A that overlaps with species B and
vice versa. The underlying ideas are that 1) the proportion
of the geographical distribution of A that overlaps with B
provides a surrogate of interaction intensity of species A
with B; and 2) this proportion is asymmetrical, such that,
for example, the geographical distribution of A may overlap
with B to a greater extent than B overlaps with A (Fig. 1).
Quantitatively, the degree of overlapping between A and B
is defined as O(A,B)�(aSb)/a as the proportion of a (A’s
area) that overlaps b (B’s area). The degree of symmetry of
the link is then calculated as

Sim(A;B)�
½O(A;B) � O(B;A)½

Max[O(A;B); O(B;A)]
(3)

where Sim(A,B) can get values in the interval [0,1]. In one
extreme of the interval (Sim�0), the link is completely
symmetric. In the other (Sim�1), the link is completely
asymmetrical so that, for example, A is fully nested in B.

It follows that if O(A,B) is understood as a measure of
interaction intensity (either direct or indirect) between
species A and B, then we can define a measure of strength
summarising how strongly other species may potentially
interact with A, measured as the weighted sum of the
proportion of the geographical distribution of B1..n that
overlaps with species A. Thereafter, this measure will be
termed strength in (Sin)

Sin(A)�
Xn

i

O(Bi;A) (4)

Species sensitivity to the loss of links in the network
The previous measures of degree (k) and strength (Sin)
provide indices allowing the quantification of the robust-
ness of small sets of interacting species to the loss of highly
connected species. A third measure, herein termed strength
out (sout), measures the sensitivity of individual species to
the loss of nodes in the network. Strength out does not
contribute to measuring network robustness; it measures
how dependent a species might be, given the potential
interactions with other species: a high sout implies that the
target species is highly dependent on other species, while
low sout implies the opposite. Strength out can be measured
as the weighted sum of the proportion of the geographic
distribution of species A that overlaps with B1..n

Sout(A)�
Xn

i

O(A;Bi) (5)

Network robustness
The former measures are focused on the properties of
summed pairs of interacting species. To assess the overall
robustness of networks we need to investigate the collective
properties of degree (k) and strength (sin). Following Dunne
et al. (2002b), network robustness can firstly be investigated
by examination of the frequency distribution of the species
degree ki. That is, the frequency distribution of the number
of species a given species interacts with. Formally, the
distribution P(k) gives the proportion of species in the
network having degree k. Typically P(k) follows an
exponential or power law (scale-free) distributions. Scale-
free distributions depict networks in which most species are
poorly connected with one another whereas a few species are
well connected. In the ecological literature, such well-
connected species are termed keystones, whereas in the
network literature they are termed hubs. Scale-free degree
frequency distributions are expected to be very robust to
random loss of species, because most species are poorly
connected in the network thus being unlikely removed by
chance. However, they are very sensitive to the chirurgic
removal of species with high k degree (Albert et al. 2000).
In contrast, networks with exponential degree distributions,
whereby a great proportion of species is highly connected
with other species, are more sensitive to random removal of
species.

Secondly, network robustness was investigated by ex-
amination of the frequency distribution of the species
strength si. That is, the frequency distribution of the sum of
dependencies between pairs of species (our measure of Sin).
The distribution of P(sin) is expected to generally have the
same properties as P(k) (Barrat et al. 2004).

Modelling exposure of individual species to climate
change

Species exposure to climate change was measured as d�
ritfuture�ritbaseline, where r is the distributional range of
species i at time t. In order to calculate d, individual species

Figure 1. Graphical representation of symmetry in the geogra-
phical distribution between pairs of species: (a) species A depends
strongly on species B, but species B does not depend strongly on
species A; (b) species A and B depends moderately and equally on
one another.
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potential distributions were modelled with ensemble fore-
casting (Araújo and New 2007) based on four widely-used
bioclimatic envelope modelling techniques: 1) generalized
linear models assuming a binomial error distribution
(GLM, McCullagh and Nelder 1989); 2) mahalanobis
distance (MD, Farber and Kadmon 2003); 3) maximum
entropy (MaxEnt, Phillips and Dudı́k 2008); and 4) genetic
algorithm for rule prediction (GARP, Stockwell and Peters
1999). Maximum entropy and GARP were parameterised
using the default options in MaxEnt and Open Modeller
GARP. Internal evaluation of the models was performed
with a data split procedure, whereby 70% of the occurrence
data was randomly split and used for calibration of the
models and the remaining 30% were used for cross-
evaluation of the models; this procedure was repeated 50
times thus generating a 50-fold cross-validation of model
results. For species with range size B10 cells, rather than
performing a 50-fold cross validation, each of the n cells
with presence records were deleted once and the analyses
were repeated n times. Model accuracy was measured using
the average True Skill Statistic (Allouche et al. 2006). This
analysis was performed to check if grossly implausible
projections were being made (i.e. TSSB0.3). No species
was removed based on this criterion and because measures
of accuracy on non-independent data do not provide a
reliable benchmark for evaluation of projections of species
distributional changes under climate change (Araújo et al.
2005a), we instead used an unweighted consensus of the
four modelling techniques. Projections agreeing at least half
of the times were retained. With such approach potential
errors associated with individual model projections are thus
smoothed out in the consensus (Araújo et al. 2005b,
Marmion et al. 2009). Nevertheless, final projections for
current and future periods were obtained with all known
records of occurrence, because bioclimate envelope models
have been shown to be extremely sensitive to incomplete-
ness of data in the calibration set (Araújo et al. 2009).
Models were fitted with the BIOENSEMBLES software
(Diniz-Filho et al. 2009).

Assessing co-variation between robustness and
exposure to climate change

The two measures of network robustness can be compared
against measures of exposure of species to climate change.
Such comparison allows addressing the question of whether
species with disproportionate contribution to network
robustness, or species that are particularly sensitive to the
loss of links in the network, are less or more exposed to
climate change than species with minor contributions to
network robustness or with small dependence on network
structure.

The case study

The species distributions used to illustrate the framework
included records of presence and absence for 58 amphi-
bians, 91 reptiles (Gasc et al. 1997), 233 breeding birds
(Hagemeijer and Blair 1997), and 186 mammals (Mitchell-
Jones et al. 1999). Data represents the majority of terrestrial

vertebrates of Europe (only mammals and birds with life-
cycles highly dependent on water bodies were removed).
The geographic grid used is based on that of the Atlas
Florae Europaeae (Lahti and Lampinen 1999), with cell
boundaries typically following the 50 km lines of the
Universal Transverse Mercator (UTM) grid, except near the
border of the six-degree UTM zones and at coasts. Data
were converted to the AFE grid system by identifying
unique (although sometimes approximate) correspondence
between cells in these grids. The mapped area (2089 grid
cells) excludes most of the eastern European countries
(except for the Baltic States) because of low recording
efforts in these areas (Williams et al. 2000).

The bioclimate envelope models were constructed with
three variables (mean temperature of the coldest month
(8C), mean temperature of the warmest month (8C), and
mean annual summed precipitation (mm)) thought to
reflect two properties of the climate � temperature and
water � that have known roles in imposing constraints upon
species distributions as a result of widely shared physiolo-
gical limitations (Hawkins et al. 2003, Whittaker et al.
2007). Variables were also checked for collinearity using
principal components analysis (PCA). The mean tempera-
ture of the warmest month (highest loading in PCA 1) was
nearly orthogonal with mean summed precipitation (high-
est loading in PCA 2). The mean temperature of the coldest
month was characterised with a vector 45 degrees from PCA
1 and 2.

Climate parameters were derived from an updated
version of climate data provided by New et al. (2000).
The updated data provides monthly values for the years
1901�2000 in a 10? grid resolution (Schroter et al. 2005).
Average monthly temperature and precipitation in grid cells
covering the mapped area of Europe were used to calculate
mean values of three different climate parameters for the
period 1961�1991 (referred to as ‘baseline data’). Future
projections for 2020�2050 (referred to as the 2050
scenario) were based on climate model outputs from
HadCM3 and made available through the Intergovern-
mental Panel on Climate Change (IPCC) Data Distribu-
tion Centre (Bipcc-ddc.cru.uea.ac.uk�). The modelled
climate anomalies were scaled based on the A1FI scenario
(Nakicenovic and Swart 2000).

Results

Network structure

Co-occurrence networks in the four groups of terrestrial
vertebrates reveal different biogeographical structures
(Fig. 2). Amphibians (median range size�79) have a co-
occurrence network hub (i.e. with species highly connected
to other species) in the Iberian Peninsula and another
centred in central Europe. Reptiles (median range size�86)
have two Mediterranean hubs (Iberian and Balkan penin-
sulas) and third centred in central Europe. Birds and
mammals (median range sizes�389 and 187 respectively),
have a slightly more diffuse network structure with a main
hub in central Europe. Nevertheless, for birds, two smaller
hubs are detected in the SW Mediterranean (including parts
of the Iberian Peninsula and islands west of Italy) and

6-EV



Scandinavia. Mammals have a more diffuse central Eur-
opean network structure extending to parts of Scandinavia
with a small hub recorded in the Iberian Peninsula. Notice
that Fig. 2 plots nodes (species) and links (level of co-
occurrence just below the percolation threshold, Supple-
mentary material Fig. A1), with nodes being located at the
centre of each species range. Because species with restricted
ranges are mainly in the south and to a smaller extent in the
north, and species with wide ranges occur throughout most
of Europe, central European hubs mainly represent the
centroids of species that are widespread across Europe,
whereas southern or northern hubs represent faunas nested
in smaller regions.

Network robustness

Even though the spatial distribution of nodes and links
varies between the four taxonomic groups, the empirical
degree distribution P(k) (for definitions see Table 2)
displays a power-law-like distribution that is typical of
many complex networks (Fig. 3). Departures to a perfect
power law distribution do exist in our results, however. This
is particularly true for birds and, to smaller extent,
mammals since both taxa have more species with high
degree ki than expected. In other words, they have more
species well connected in the network than expected from a
typical power law distribution.

The frequency distribution of species strength P(sin) (for
definitions see Table 2) also reveals a power-law-like
distribution for amphibians, reptiles and mammals, with
the distribution of strength (in) for birds displaying no clear
structure (Fig. 3). Inspection of the frequency distribution
of the pairwise symmetries of co-occurrence between species
(the measure used to calculate measures of strength, Table
2), further reveals the existence of a left-skewed distribution
for most pairwise combinations of species (Fig. 4). In other
words, most pairwise interactions (of co-occurrence) be-
tween species are asymmetrical.

Species sensitivity to network loss

Strength (out) is best characterised by a bell-shaped-
like distribution (Fig. 4). The distribution of sout for
amphibians is slightly skewed to the left, meaning that a
great proportion of species are expected to be sensitive
to the loss of nodes in the network. The tendency for
left (negative) skews is recorded also for birds and mammals
but the degree of skewness is generally low for all taxa
(Fig. 4).

Network properties and climate change

The two measures of species’ contribution to network
robustness, degree (k) and strength (sin), display similar

Figure 2. Spatial networks of co-occurrence among the European amphibians, reptiles, birds and mammals after removal of non-
significant links (step 3 of the methods), and setting a threshold just below the percolation point (step 4 of the methods, Supplementary
material Fig. A1). Circles represent the centroids of species distributions in a lat long coordinate system, and their sizes are proportional to
the species degree (i.e. the number of links every species makes with other species). Lines represent the links between species. From top left
to bottom right: amphibians; reptiles; birds; and mammals.
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properties when compared against species’ exposure to 21st
century climate change (Fig. 5). Essentially, amphibians,
birds and mammals display a triangular relationship with
over-dispersion of range-change values (d) for species with
low contribution to overall network robustness (low k and
sin). Species with high k degree and sin strength tend to
covary near the horizontal line of no-range-change, which
means that as species become more important to overall
network robustness they are also projected to be less
impacted by climate change. This relationship is parti-
cularly marked for birds and mammals and for the
measure of strength (sin). For reptiles the pattern is sligh-
tly different with a clear tendency for species gaining
range as a consequence of climate change being also the
species that contribute more to robustness of the networks
(Fig. 5).

When examining the measure of species sensitivity to
network loss (sout) against projected climate change impacts
on species, no clear pattern emerges (Fig. 5). If anything,
there is a tendency for species with intermediate strengths
(sout) to over-disperse towards intermediate values, but this
may well be a consequence of the quasi-random distribution
of strength (sout) values (Fig. 4). Nevertheless there seems to
be a tendency for amphibian and reptile species with high
dependence on network structure (high sout) to be generally
positively affected by climate change (a few exceptions for
amphibians). In contrast, the bird and mammal species that
gaining or losing more with climate change tend to have
low dependences on network structure.

Discussion

This study provides an approximation to using network
analysis for assessments of climate change impacts on
species. If one accepts that broad-scale interactions are
reflected in patterns of overlapping distributions between
species, then results invite the interpretation that 1) most
pairs of interacting species had asymmetrical interdepen-
dencies, 2) most species displayed weak links thus a
tendency for individualistic behaviour, and 3) networks
describing the geographic pattern of co-occurrence among
European vertebrate species displayed general properties
shared by other complex networks, namely a power-law (i.e.
scale free) distribution of degree (k) and strength (sin), with
the notable exception of networks for birds and mammals
(the latter departing from scale free distribution only for k)
(see also Azaele et al. 2010). Networks with scale-free
distributions are particularly robust to random losses of
nodes (Albert et al. 2000, Kaiser-Bunbury et al. 2010),
while being sensitive to losses of well-connected hubs in the
network (Albert et al. 2000). Having characterised the
typology of the networks and identified the hubs that glue
them together the question that follows is whether with
climate change, such hubs would be affected. Here, species
more exposed to climate change tended to be poorly
connected to other species within the network (low k and
sin), while the more connected species tended to be less
exposed to climate change. Low connectance for highly
exposed species and high connectance for species with low
exposure to climate change is good news. Poor connectance,

Figure 3. Distribution of degree (left panel), as defined by the probability of one species interacting with k species, and strength (in) (right
panel) values, as defined by the sum of dependencies between the set of species B1,n with species A. In the panels: a) stands for amphibians;
b) for reptiles; c) for birds; and d) for mammals. In random networks the degree and strength (in) distributions follows a Poisson
distribution (or exponential if the number of nodes keeps growing), but in complex networks nodes tend to have few interactions and few
nodes are more connected than expected by chance. This heterogeneous distribution of degree and strength (in) is often described by a
power law function. In a log�log plot, such as that above, this relationship is given by a linear slope for the entire range of degree and
strength (in) values. The distribution of degree and strength (in) values was processed using a standard rebinning procedure described by
Adami and Chu (2002). The distributions of strength (in) for birds does not follow a power-law like distribution, thus we show the results
without log-scaling the x axis.
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or low distributional overlap, makes the networks species
belong to more robust to climate change because species are
unlikely to be strongly associated with the distribution of
other species in the network. It also indicates that while
projections assuming individualistic responses of species to
climate change are warranted for most cases, the general
properties of interaction networks must be examined in
order to anticipate which species would exert greater
influence on the others and which would be more
dependent on linkages with other species in the network.
In other words, while most species display low connectance
or overlap with other species, some species do have a high
degree of connectance, thus supporting the hypothesis that
strong interdependencies exist between species (but see the
cautionary note below). Our framework provides one way
to begin exploring the consequences of climate change on

Figure 4. Frequency distribution of asymmetry values between
pairs of species, and strength (out), as defined by the sum of
dependencies between species A and B1,n.. In each panel from top
left to bottom right: amphibians, reptiles, birds and mammals.

F
ig

u
re

5
.

Sp
ec

ie
s

d
eg

re
e

(k
),

st
re

n
gt

h
(s

in
)

(d
eg

re
e

to
w

h
ic

h
fo

ca
l
sp

ec
ie

s
ar

e
n

ee
d

ed
b

y
ot

h
er

sp
ec

ie
s)

,
an

d
st

re
n

gt
h

(s
o
u

t)
(d

eg
re

e
to

w
h

ic
h

fo
ca

l
sp

ec
ie

s
n

ee
d

s
ot

h
er

n
et

w
or

ke
d

sp
ec

ie
s)

,
p

lo
tt

ed
ag

ai
n

st
th

e
p

ro
je

ct
ed

ch
an

ge
(d

)
in

th
e

p
ot

en
ti

al
d

is
tr

ib
u

ti
on

of
sp

ec
ie

s
u

n
d

er
cl

im
at

e
ch

an
ge

.
W

h
en

d
va

lu
es

ar
e
�

0
th

e
sp

ec
ie

s
ar

e
p

ro
je

ct
ed

to
ex

p
an

d
th

ei
r

ra
n

ge
s

u
n

d
er

cl
im

at
e

ch
an

ge
;

w
h

en
d

va
lu

es
ar

e
B

0
co

n
tr

ac
ti

on
s

ar
e

p
ro

je
ct

ed
.

In
ea

ch
p

an
el

fr
om

to
p

le
ft

to
b

ot
to

m
ri

gh
t:

am
p

h
ib

ia
n

s,
re

p
ti

le
s,

b
ir

d
s

an
d

m
am

m
al

s.

9-EV



complex networks of co-occurring species. The critical
question is whether co-occurrence networks provide infer-
ences about functional properties of networks that would be
useful for biodiversity assessments of climate change
impacts.

The proposed framework rests on several assumptions
that are largely untested and obviously are debatable; for
example, that the strength of the interactions between two
species can be inferred from the number of sites where both
species coexist. Although co-occurrence networks are blind
to the specific types of interactions involved, they do
capture the essential fact that in order to interact, species
must typically coexist. One exception is competitive
exclusion, whereby spatial non-overlap is the outcome
of strong negative interactions. Spatial networks of co-
occurrence may thus be interpreted as summarizing
potential interactions between species rather than actual
ones. All other things being equal, one would expect regions
with highly spatially dependent faunas to indicate the
existence of functional interactions between species more so
than faunas with lower spatial interdependences.

To avoid amalgamating likely and the unlikely interac-
tions, as inferred from patterns of co-occurrence among
species, we proposed a methodology based on 1) removal of
links that may arise by chance alone, and 2) further removal
of links preventing the emergence of clear network structure
through inferences based on percolation theory (Table 1).
The proposed methodology rests on the assumption that all
species are either directly or indirectly connected in
ecological systems and that spatial co-occurrence among
species is, at partly, a consequence of functional interac-
tions. Obviously, this is not always the case and species
might co-occur due to shared physiological limitations or
shared historical contingencies. For example, interaction
hubs among amphibians and reptiles in the Mediterranean
are likely to reflect mechanisms of parapatric speciation and
long-term population persistence in glacial refugia that were
not followed by inter-glacial expansion, possibly due to
philopatry and limited dispersal (Gasc et al. 1997, Holman
1998, Araújo et al. 2008). The use of co-occurrence
networks for practical assessments of biodiversity and
climate change would thus require that an additional step
3) is implemented to screen for the ecological realism of the
inferred interactions. Such screening would involve basic
considerations of scale (e.g. what is the minimum spatial
resolution required to infer interactions from co-occurrence
patterns for particular groups of organisms?), as well as
consideration of relevant aspects of the auto-ecology of the
species (e.g. what organisms are likely to interact with one
another?).

Previous attempts to factor biotic interactions into
assessments of climate change impacts on species distribu-
tions are difficult to generalize as they typically involved a
limited number of species in experimentally controlled
environments (Davis et al. 1998, Suttle et al. 2007,
Harmon et al. 2009), or use modelling approaches that
require information that is generally unavailable for most
species (Araújo and Luoto 2007), or tools that are
conceptually incapable of handling interactions where
they operate, i.e. in geographical space (see for discussion
Baselga and Araújo 2009, 2010).

The proposed framework is a first attempt to handle a
complex problem using the theoretical framework and
analytical toolboxes of network analysis and bioclimatic
modelling. We hope our contribution will motivate others
to test the predictions and assumptions of the framework
herein proposed, particularly the proposed inferences about
network robustness and species sensitivity to loss of network
links using co-occurrence networks. It is clear that not all
potential interactions are real, and in some cases it may be
more useful to explore bipartite networks that restrict
analysis to co-occurrence of preselected taxa based on
known functional relationships (Bascompte et al. 2006,
Berg et al. 2009). But the important question is whether the
general patterns emerging from coarse biogeographical
analysis of networks reflects underlying patterns in nature.
In other words, if the general structure of hubs and links in
the network is maintained when actual interactions, rather
than potential ones, are considered. A recent paper, showed
that patterns of species co-occurrence at coarse geographical
continental scales exhibit strong signals of interspecific
interactions (Gotelli et al. 2010). The authors revealed that
community-wide patterns of spatial segregation among
Danish breeding birds could not be attributed to the patchy
distribution of habitat, or to gross differences in habitat
utilization among ecologically similar species. They pro-
posed that conspecific attraction in concert with interspe-
cific territoriality may result in spatially segregated
distributions of ecologically similar species at larger spatial
scales when habitat patch size is limited. Finally, they also
showed that the effects of species interactions on commu-
nity assembly were pervasive and could be discerned at grain
sizes up to four orders of magnitude larger than those of
individual territories. More examples support the view that
spatial co-occurrence allows inferences to be about interac-
tions among species. For example, Azeaele et al. (2010)
demonstrated the usefulness of examining co-occurrence
networks to uncover functional relationships between plants
in forest ecosystems. Another study empirically investigated
the extent to which trophic relationships between species
could be uncovered through the analysis of bipartite
predator-prey co-occurrence networks (Bell et al. 2010).
The results of Bell et al. (2010) are encouraging in that the
feeding behaviour of the studied polyphagous beetles and
spiders could be inferred with their particular implementa-
tion of co-occurrence networks. More studies investigating
the extent to which co-occurrence networks can help infer
functional interactions among species are obviously needed
(see also Heikkinen et al. 2007, Meier et al. 2010), but our
prediction is that if errors arising from the simplified
assumptions of co-occurrence networks are randomly
distributed across taxa and regions, then functional net-
works based on verifiable interactions between species
would not change the overall patterns emerging from co-
occurrence networks. This should be particularly true at
coarse resolutions where ‘ecological noise’ is reduced
(Lawton 1999).

Conclusion

The challenges posed by a rapidly changing climate and its
consequences on biodiversity, requires a concerted effort of
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scientists in different disciplines. In this paper we have
advanced an idea that builds on the interaction between
network theory and bioclimatic modelling to generate a
simple framework that can be use as a first approximation
to tackle this challenge. We believe that network theory
provides a suitable and powerful framework to address the
complexities of climate change impacts on biodiversity,
which in concert with simple co-occurrence matrices (the
fundamental unit of analysis in community ecology and
biogeography, Gotelli 2000) can pave the way to incorpo-
rate species interactions into the analysis of species responses
to climate change and further our understanding of the
effects of climate change on biodiversity.
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